
Winfried Auzinger Sommersemester 2016
Dirk Praetorius 26. April 2016

Übungsaufgaben zur VU Computermathematik

Serie 7

Exercise 7.1: Relations and matrices: some basic operations.

A relation on a set X is a generalization of a function f : X → X. It is a mapping r : X ×X → {true, false};
x and y are related to each other by r if r(x, y) is true. 7 ‘r(x, y)’ simply means that r(x, y) holds.

For instance, r(x, y) := x < y is a relation on R.

Here we consider the case of a finite set X = {1, 2, . . . , n} for fixed n ∈ N. Then a relation on X can be represented
by an n×n - matrix R with entries true or false (using 1 and 0 instead may be more convenient). R[i, j] = true

mean that r(i, j) holds. For instance, the relation i = j is represented by the identity matrix (1 = true only on
the diagonal.).

a) To build the matrix R for the relation i < j on X = {1, 2, . . . , n} for given n ∈ N, design an appropriate
procedure.

b) A relation r is called reflexive if r(i, i) for all i ∈ X.

Design a function isreflexive(R) which returns true if R defines a reflexive relation, and false otherwise.

c) A relation r is called symmetric if r(i, j) implies r(j, i).

Design a function issymmetric(R) which returns true if R defines a symmetric relation, and false other-
wise.

d) A relation r is called transitive if r(i, j) and r(j, k) imply r(i, k).

Design a function istransitive(R) which returns true if R defines a transitive relation, and false other-
wise.

Hint: In R, represent true by 1 and false by 0 and look at the matrix product R2. Then it can be shown
that R defines a transitive relation iff R2[i, j] 6= 0 implies R[i, j] 6= 0.

A reflexive, symmetric and transitive relation is called an equivalence relation.

e) Let X be decomposed into a union of a family of nonempty pairwise disjoint subsets. Then,

r(x, y) := x and y are contained in the same subset of this family

is an equivalence relation. Turning this around, each equivalence relation defines such a decomposition of X
into subsets – so-called equivalence classes.

Assume that the matrix R represents an equivalence relation r on X = {1, . . . , n}. Design a procedure eqclass(i,R)

which returns the equivalence class

{j ∈ X : r(i, j)} ⊆ X

in form of a set. Test an example.

7 The set {(x, y) ∈ X ×X : r(x, y) = true is a subset of the Cartesian product X ×X. Specifying a subset of X ×X is equivalent
to specifying a relation r.

Exercise 7.2: Boolean matrix product.

Let A = (aij) and B = (bij) be square matrices of the same dimension with entries true or false, as in 7.1. We
call them Boolean matrices. The Boolean matrix product is defined as the matrix C = (cij), with

cij = any({(aik and bkj), k = 1 . . . n}),

where any(. . .) is true if at least one of its arguments is true (generalization of or for more than two arguments).

a) Provide an implementation of any in form of a function or a procedure expecting a Boolean vector (i.e., a
vector with entries true or false) as its argument.

b) Implement Boolean matrix multiplication in form of a procedure, using any.

c) Repeat a) and b), but assuming that true and false are represented by 1 and 0, respectively.

Remark: A Boolean matrix R represents a finite relation. This relation is transitive iff R2[i, j] = 1 implies
R[i, j] = 1, where R2 is the Boolean matrix product; see 7.1.

Exercise 7.3: An argmin implementation.

• Design a procedure argmin(A::{Vector,Matrix}) 8 which accepts an object A of type Vector or Matrix as its
argument and returns the position 9 of a minimal element in A (minimal in the sense of ordering of R) together
with the value of the minimum. For the case of a Matrix A, the ‘position’ is the corresponding pair of indices.

Include a check whether all elements of A have a real numerical value (use is(...,numeric)). 10 If one of these
tests fails, exit with an error - message.

Remark: In Maple, there is min but there seems not to exist something like argmin.

Hint: Using type you can determine the type of an object. In this way you can discern between Vector and
Matrix.

Exercise 7.4: Sudoku (i).

We represent a classical 9× 9 Sudoku by a Matrix 11 S and begin to play. To find a single correct entry in a given
incomplete S (example):

S =

2 3 9 7

8 3 9 6

3 1 4

3 1 5 4

8 6 3 5 1

2 5 3 8

9 6

4 7 3 6

5 6 3 8

realize the following operations:

8 This syntax means that arguments of the type Vector or Matrix are accepted; otherwise the procedure will automatically exit
with an error message (try). For accepting a single type only, e.g., Vector, one would use the syntax A::Vector.

9 The minimal value may be attained several times, but returning only one of them is required here.
10 Data types are organized in a hierarchic way. E.g., the types integer, rational, float are sub-types of the type numeric

representing any numerical real value.
11 Empty positions are represented by 0.

a) Design a procedure iscorrect(i,j,n,S) which checks whether inserting n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} at position
(i, j) is correct, i.e., it observes the rules (no double entry in line, column, or surrounding 3 × 3 box). Your
procedure returns true or false, respectively.

This is of course not enough; for instance, in the above example, inserting 2, 5, 7 or 9 instead of 3 at position (3,2)
would be also correct.

b) Modify your procedure from a), checking whether the entry n must necessarily be inserted at position (i,j). This
means that

— either in line i,

— or in column j,

— or in the surrounding 3× 3 box,

there is no other location where n can be inserted. In this case, also return a copy of S with the entry correctly
inserted. 12

In the example, 3 is necessarily to be inserted at position (3,2) because all other positions in the upper left
3× 3 box are blocked.

Exercise 7.5: (∗) Sudoku (ii).

• Design a procedure for solving a Sudoku puzzle, using 7.4 b). Use a brute-force strategy scanning all empty
fields and trying all possibilities.

Now, two cases can occur::

— In very simple cases, you always find an entry for which there is no alternative according to 7.4 b), and the
process successfully runs to completion.

— Usually, at some point you do not find such an entry, and your process stops at this point.

In such a case, some more refined look-ahead strategy is required, but such a more complicated algorithm
is not the topic of this exercise.

Test what happens for the above example – it has low degree of difficulty. For more difficult examples, the behavior
will be different.

Exercise 7.6: Nothing special; just to train recursion.

a) Devils’s staircase.

Consider the sequence of continuous functions 13 fn : [0, 1]→ [0, 1], recursively defined by f0(x) := x and

fn(x) :=

1
2 fn−1(3x), 0 ≤ x < 1

3 ,

1
2 ,

1
3 ≤ x ≤

2
3 ,

1
2

(
1 + fn−1(3x− 2)

)
, 2

3 < x ≤ 1

for n ≥ 1.

Implement these functions in form of a recursive function or procedure, and produce plots for several values
of n.

b) Let A and B be N ×N matrices, N even. By partitioning A and B into four blocks of dimension N
2 ×

N
2 , the

matrix product A · B can be realized using 8 ‘smaller’ matrix multiplications and 4 smaller matrix additions. 14

Assume that N = 2n, and use partitioning in a recursive way to compute the matrix product A · B. Realize
this in form of a recursive procedure rmp(A,B).

12 The matrix S could also be a global variable.
13 Reemark: The limiting function limn→∞ fn(x) exists, it is continuous and nowhere differentiable.
14 Actually, it can be shown that one of these 8 multiplications can be replaced by a few additions. This observation is the basis for

more efficient recursive algorithms (‘Strassen algorithm’).

Exercise 7.7: Formatted output.

a) Design a procedure print sudoku(S), which writes a formatted output of a Sudoku (see 7.4)) to the screen:

+++++++++++++++++++++++++

+ 8 + 4 2 3 + 3 +

+ 8 2 3 + 2 7 + 1 5 +

+ 9 2 + 1 5 3 + +

+++++++++++++++++++++++++

+ 1 2 + 2 7 + 5 3 +

+ 3 + 7 3 + 1 2 +

+ 1 3 + 5 2 8 + 1 2 +

+++++++++++++++++++++++++

+ 1 2 8 + 4 2 3 + 7 9 +

+ 7 3 + 4 3 + +

+ 2 5 + 2 9 + 1 3 +

+++++++++++++++++++++++++

Use an auxiliary function which converts 0 to the string " " and integers n > 0 to the string "n".

Hint: Use sprintf and printf.

b) Design a procedure print sudoku(S,filename) which prints a Sudoku to a textfile (the filename is specified as
a string).

Hint: Use fprintf.

Exercise 7.8: Your favorite package?

Look at the help page ? index, and select packages. Here you see a complete list of available packages.

• Choose one of them, have a closer look, and prepare a small demo of its basic features.

There are many different packages. If you have no other special preference, you may take a closer look at the
plots and plottools packages. The package geometry is also very nice. Aficionados of combinatorics may look
at combinat (also combstruct).

