Übungsaufgaben zur VU Computermathematik
 Serie 7

Exercise 7.1: Relations and matrices: some basic operations.

A relation on a set X is a generalization of a function $f: X \rightarrow X$. It is a mapping $r: X \times X \rightarrow\{$ true, false $\} ;$ x and y are related to each other by r if $r(x, y)$ is true. ${ }^{7}$ ' $r(x, y)$ ' simply means that $r(x, y)$ holds.
For instance, $r(x, y):=x<y$ is a relation on \mathbb{R}.
Here we consider the case of a finite set $X=\{1,2, \ldots, n\}$ for fixed $n \in \mathbb{N}$. Then a relation on X can be represented by an $n \times n$-matrix R with entries true or false (using 1 and 0 instead may be more convenient). $R[i, j]=$ true mean that $r(i, j)$ holds. For instance, the relation $i=j$ is represented by the identity matrix ($1=$ true only on the diagonal.).
a) To build the matrix R for the relation $i<j$ on $X=\{1,2, \ldots, n\}$ for given $n \in \mathbb{N}$, design an appropriate procedure.
b) A relation r is called reflexive if $r(i, i)$ for all $i \in X$.

Design a function isreflexive (R) which returns true if R defines a reflexive relation, and false otherwise.
c) A relation r is called symmetric if $r(i, j)$ implies $r(j, i)$.

Design a function issymmetric (R) which returns true if R defines a symmetric relation, and false otherwise.
d) A relation r is called transitive if $r(i, j)$ and $r(j, k)$ imply $r(i, k)$.

Design a function istransitive (R) which returns true if R defines a transitive relation, and false otherwise.

Hint: In R, represent true by 1 and false by 0 and look at the matrix product R^{2}. Then it can be shown that R defines a transitive relation iff $R^{2}[i, j] \neq 0$ implies $R[i, j] \neq 0$.

A reflexive, symmetric and transitive relation is called an equivalence relation.
e) Let X be decomposed into a union of a family of nonempty pairwise disjoint subsets. Then,

$$
r(x, y):=x \text { and } y \text { are contained in the same subset of this family }
$$

is an equivalence relation. Turning this around, each equivalence relation defines such a decomposition of X into subsets - so-called equivalence classes.

Assume that the matrix R represents an equivalence relation r on $X=\{1, \ldots, n\}$. Design a procedure eqclass (i, R) which returns the equivalence class

$$
\{j \in X: r(i, j)\} \subseteq X
$$

in form of a set. Test an example.

[^0]
Exercise 7.2: Boolean matrix product.

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be square matrices of the same dimension with entries true or false, as in 7.1. We call them Boolean matrices. The Boolean matrix product is defined as the matrix $C=\left(c_{i j}\right)$, with

$$
c_{i j}=\operatorname{any}\left(\left\{\left(a_{i k} \text { and } b_{k j}\right), k=1 \ldots n\right\}\right),
$$

where any (...) is true if at least one of its arguments is true (generalization of or for more than two arguments).
a) Provide an implementation of any in form of a function or a procedure expecting a Boolean vector (i.e., a vector with entries true or false) as its argument.
b) Implement Boolean matrix multiplication in form of a procedure, using any.
c) Repeat a) and b), but assuming that true and false are represented by 1 and 0 , respectively.

Remark: A Boolean matrix R represents a finite relation. This relation is transitive iff $R^{2}[i, j]=1$ implies $R[i, j]=1$, where R^{2} is the Boolean matrix product; see 7.1.

Exercise 7.3: $\boldsymbol{A} \boldsymbol{n}$ argmin implementation.

- Design a procedure $\operatorname{argmin}\left(A::\{\text { Vector, Matrix\} })^{8}\right.$ which accepts an object A of type Vector or Matrix as its argument and returns the position ${ }^{9}$ of a minimal element in A (minimal in the sense of ordering of \mathbb{R}) together with the value of the minimum. For the case of a Matrix A, the 'position' is the corresponding pair of indices.
Include a check whether all elements of A have a real numerical value (use is (. . ., numeric)). ${ }^{10}$ If one of these tests fails, exit with an error-message.

Remark: In Maple, there is min but there seems not to exist something like argmin.
Hint: Using type you can determine the type of an object. In this way you can discern between Vector and Matrix.

Exercise 7.4: Sudoku (i).

We represent a classical 9×9 Sudoku by a Matrix ${ }^{11} S$ and begin to play. To find a single correct entry in a given incomplete S (example):

$S=$| | | | 2 | | | 3 | 9 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | | | 3 | | 9 | | 6 | |
| | 3 | | 1 | | | 4 | | |
| 3 | 1 | 5 | | | | | | 4 |
| | 8 | | 6 | 3 | 5 | | 1 | |
| 2 | | | | | | 5 | 3 | 8 |
| | | 9 | | | 6 | | | |
| | 4 | | 7 | | 3 | | | 6 |
| 5 | 6 | 3 | | | 8 | | | |

realize the following operations:

[^1]a) Design a procedure iscorrect (i,j,n,S) which checks whether inserting $n \in\{1,2,3,4,5,6,7,8,9\}$ at position (i, j) is correct, i.e., it observes the rules (no double entry in line, column, or surrounding 3×3 box). Your procedure returns true or false, respectively.

This is of course not enough; for instance, in the above example, inserting $2,5,7$ or 9 instead of 3 at position $(3,2)$ would be also correct.
b) Modify your procedure from a), checking whether the entry n must necessarily be inserted at position (i,j). This means that

- either in line i,
- or in column j,
- or in the surrounding 3×3 box,
there is no other location where n can be inserted. In this case, also return a copy of S with the entry correctly inserted. ${ }^{12}$

In the example, 3 is necessarily to be inserted at position $(3,2)$ because all other positions in the upper left 3×3 box are blocked.

Exercise 7.5: (*) Sudoku (ii).

- Design a procedure for solving a Sudoku puzzle, using $\mathbf{7 . 4} \mathbf{b}$). Use a brute-force strategy scanning all empty fields and trying all possibilities.
Now, two cases can occur::
- In very simple cases, you always find an entry for which there is no alternative according to $\mathbf{7 . 4} \mathbf{b}$), and the process successfully runs to completion.
- Usually, at some point you do not find such an entry, and your process stops at this point.

In such a case, some more refined look-ahead strategy is required, but such a more complicated algorithm is not the topic of this exercise.

Test what happens for the above example - it has low degree of difficulty. For more difficult examples, the behavior will be different.

Exercise 7.6: Nothing special; just to train recursion.

a) Devils's staircase.

Consider the sequence of continuous functions ${ }^{13} f_{n}:[0,1] \rightarrow[0,1]$, recursively defined by $f_{0}(x):=x$ and

$$
f_{n}(x):=\left\{\begin{aligned}
\frac{1}{2} f_{n-1}(3 x), & 0 \leq x<\frac{1}{3} \\
\frac{1}{2}, & \frac{1}{3} \leq x \leq \frac{2}{3} \\
\frac{1}{2}\left(1+f_{n-1}(3 x-2)\right), & \frac{2}{3}<x \leq 1
\end{aligned}\right.
$$

for $n \geq 1$.
Implement these functions in form of a recursive function or procedure, and produce plots for several values of n.
b) Let A and B be $N \times N$ matrices, N even. By partitioning A and B into four blocks of dimension $\frac{N}{2} \times \frac{N}{2}$, the matrix product $A \cdot B$ can be realized using 8 'smaller' matrix multiplications and 4 smaller matrix additions. ${ }^{14}$

Assume that $N=2^{n}$, and use partitioning in a recursive way to compute the matrix product $A \cdot B$. Realize this in form of a recursive procedure $\operatorname{rmp}(A, B)$.

[^2]
Exercise 7.7: Formatted output.

a) Design a procedure print_sudoku(S), which writes a formatted output of a Sudoku (see 7.4)) to the screen:

```
++++++++++++++++++++++++++++
+ 8 + 423+ 3 +
+823+27+155+
+9 2 + 1 5 3 + +
++++++++++++++++++++++++++++
+12 + 27+5 3 +
+ 3+7 3 + 12 +
+1 3+528+1 2 +
+++++++++++++++++++++++++++++
+128+423+7 9 +
+7 3+4 3+ +
+ 25+29+1 3+
++++++++++++++++++++++++++++
```

Use an auxiliary function which converts 0 to the string " " and integers $n>0$ to the string " n ".
Hint: Use sprintf and printf.
b) Design a procedure print_sudoku(S,filename) which prints a Sudoku to a textfile (the filename is specified as a string).
Hint: Use fprintf.

Exercise 7.8: Your favorite package?

Look at the help page ? index, and select packages. Here you see a complete list of available packages.

- Choose one of them, have a closer look, and prepare a small demo of its basic features.

There are many different packages. If you have no other special preference, you may take a closer look at the plots and plottools packages. The package geometry is also very nice. Aficionados of combinatorics may look at combinat (also combstruct).

[^0]: ${ }^{7}$ The set $\{(x, y) \in X \times X: r(x, y)=$ true is a subset of the Cartesian product $X \times X$. Specifying a subset of $X \times X$ is equivalent to specifying a relation r.

[^1]: ${ }^{8}$ This syntax means that arguments of the type Vector or Matrix are accepted; otherwise the procedure will automatically exit with an error message (try). For accepting a single type only, e.g., Vector, one would use the syntax $A:$:Vector.
 ${ }^{9}$ The minimal value may be attained several times, but returning only one of them is required here.
 ${ }^{10}$ Data types are organized in a hierarchic way. E.g., the types integer, rational, float are sub-types of the type numeric representing any numerical real value.
 ${ }^{11}$ Empty positions are represented by 0.

[^2]: ${ }^{12}$ The matrix S could also be a global variable.
 ${ }^{13}$ Reemark: The limiting function $\lim _{n \rightarrow \infty} f_{n}(x)$ exists, it is continuous and nowhere differentiable.
 ${ }^{14}$ Actually, it can be shown that one of these 8 multiplications can be replaced by a few additions. This observation is the basis for more efficient recursive algorithms ('Strassen algorithm').

