Übungsaufgaben zur VU Computermathematik
 Serie 8

In all examples we use the package LinearAlgebra and the data types Vector and Matrix. Some numerical aspects are included.

Exercise 8.1: Playing with Hilbert matrices.

The symmetric matrix

$$
H_{n}=\left(\begin{array}{ccccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \cdots \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \cdots \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\frac{1}{i+j-1}\right)_{i, j=1 \ldots n} \in \mathbb{R}^{n \times n}
$$

is called Hilbert matrix (see LinearAlgebra[HilbertMatrix]).
a) The inverse of a Hilbert matrix has integer entries which become large in size very quickly with increasing dimension n.

To illustrate this, produce a pointplot of the numbers

$$
\max _{1 \leq i, j \leq n}\left|\left(H_{n}^{-1}\right)_{i j}\right| .
$$

for $n=2,3, \ldots$. (To see the trend, it may be more useful to plot logarithms.)
b) Use plots[matrixplot] to visualize H_{n} and H_{n}^{-1}, e.g., for $n=10$ or $n=20$.
c) Use time() to measure the CPU time required for inversion (in exact rational arithmetic) of the Hilbert matrices H_{n} in dependence of the dimension n. A reasonable choice will be $n=10,20, \ldots, 100$; maybe larger. Produce a [logarithmic] pointplot of these numbers. What do you observe?
d) This is just as an example for using an indexing function:

Define the matrix

$$
H_{n, m}=\left(\begin{array}{ccccc}
0 & \frac{1}{m+1} & \frac{1}{m+2} & \frac{1}{m+3} & \cdots \\
\frac{1}{m^{2}+1} & 0 & \frac{1}{m+3} & \frac{1}{m+4} & \cdots \\
\frac{1}{m^{2}+2} & \frac{1}{m^{2}+3} & 0 & \frac{1}{m+5} & \cdots \\
\frac{1}{m^{2}+3} & \frac{1}{m^{2}+4} & \frac{1}{m^{2}+5} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

For this purpose, use a function or a procedure depending on the two parameters $m>1$ and $n \in \mathbb{N}$, which generates such a matrix.

Exercise 8.2: Investigation of a parameter-dependent matrix.

Consider the matrix

$$
A=\left(\begin{array}{ccccc}
c & c & 1 & 0 & c \\
1 & 0 & 0 & c & 0 \\
0 & 1 & 1 & 0 & 1 \\
c & 1 & 0 & 1 & 0 \\
1 & c & 1 & 0 & c
\end{array}\right)
$$

depending on a real parameter c. Use LinearAlgebra:
a) For which values c is A invertible? Determine the inverse of A.
b) Same question as in a), for the symmetric part $\left(A+A^{T}\right) / 2$ instead of A.
c) Same question as in a), for the skew-symmetric part $\left(A-A^{T}\right) / 2$ instead of A.
d) For those values of c where A is not invertible, compute a representation for the kernel of A. What is the rank of A in these cases?
e) Same question as in b), but for the 'real part' $\left(A+A^{*}\right) / 2$, where c is admitted to be complex and A^{*} is the Hermitian transpose of A. Can you answer this question?
If you fail, represent c in the form $c=a+i b, a, b \in \mathbb{R}$, and try again.
Hint: Use HermitianTranspose; then, c will automatically be interpreted as a complex number.

Exercise 8.3: A numerical study: Is this matrix indeed invertible?

a) We consider a matrix A with floating point entries,

$$
A=\left(\begin{array}{rr}
1.11 & 4.44 \\
3.33 & 13.30
\end{array}\right)
$$

Compute the inverse of A.
b) Assume that A is not given exactly (due to measurement or rounding errors); the original matrix may be the following, very similar one:

$$
B=\left(\begin{array}{rr}
1.111 & 4.440 \\
3.333 & 13.320
\end{array}\right)
$$

Compute the inverse of B.
c) How can we verify that A is close to a singular matrix? This is a topic in courses on numerical linear algebra. Here, we simply look at the columns of A :
Compute the angle between these columns.
As you see, the columns are almost parallel. If they are exactly parallel, the matrix becomes singular (this is the case for B). Therefore we say: A is 'almost singular'.
(Remark: When you try to solve such a linear system $A x=b$, then the answer will depend in a very sensitive way on perturbations in its coefficients. Such a system is called ill-conditioned.)

Exercise 8.4: Hilbert matrices are ill-conditioned. Computing eigenvalues.

Hilbert matrices are increasingly ill-conditioned with increasing dimension, i.e., they get 'closer and closer' to a singular matrix. We investigate this property with the following experiment, where we consider H_{n} perturbed by a multiple of the identity matrix.
a) Consider the matrices $A_{n}:=H_{n}-\varepsilon I_{n}\left(H_{n}\right.$ from 8.1, $I_{n}=$ identity matrix) for $n=2,3,4,5, \ldots$, and find the smallest (in size) $\varepsilon \in \mathbb{C}$ such that A_{n} is a singular matrix.

Hint: Use Determinant (or CharacteristicPolynomial), solve, and evalf.
b) For a square matrix A, a real or complex number ε such that $A-\varepsilon I$ is singular is called an eigenvalue of A.

Repeat the computation from a) using Eigenvalues(...) and Eigenvalues (evalf(...)).
(The latter computes eigenvalues by a more efficient numerical algorithm, and you can also test larger dimensions, e.g., $n=10, n=20$.)
Remark: In linear algebra it is shown that all eigenvalues of a symmetric matrix like H_{n} are real.

Exercise 8.5: Constructing a projector.

Let \mathcal{U} be a linear subspace of \mathbb{R}^{3} of dimension 2 (i.e., a plane containing 0). We wish to determine the matrix representation of the projector P which projects $x \in \mathbb{R}^{3}$ onto \mathcal{U} along the direction of a given vector $0 \neq w \notin \mathcal{U}$. P is uniquely determined by the requirements (make a sketch)

$$
P u=u, \quad P v=v, \quad P w=0
$$

where $u, v \in \mathcal{U}$ are any linearly independent vectors spanning \mathcal{U}.
a) Design a procedure projector(u: :Vector, v: :Vector, w: :Vector) which returns the matrix P in form of an object of type Matrix.
Hint: Use LinearSolve to solve the corresponding matrix equation. What happens if $w \in \mathcal{U}$ or if u, v are linearly dependent?
b) What is the rank of P ? - verify.
c) What is P^{2}, and why?

Remark: If $w \perp \mathcal{U}$ then the outcome is the orthogonal projector onto \mathcal{U}. If, on the other hand, w is almost parallel to \mathcal{U}, then the action of the projector is very sensitive to data perturbations ('schleifender Schnitt').

Exercise 8.6: Evaluating a matrix polynomial.

Let $p:=x \mapsto c_{0}+c_{1} x+\ldots+c_{k} x^{k}$ be a polynomial function. Then, the matrix-valued function

$$
A \mapsto p(A):=c_{0} I_{n}+c_{1} A+\ldots+c_{k} A^{k}, \quad \text { with } A \in \mathbb{R}^{n \times n}\left(\text { or } \mathbb{C}^{n \times n}\right),
$$

is called a matrix polynomial.

- Design a procedure peval (p, A, v) which computes the matrix-vector product $p(A) \cdot v$ for given p, a given square matrix A, and a given vector v.
- Include a check for compatible dimensions concerning A: :Matrix and v: :Vector.
- Use efficient evaluation using a Horner-like-scheme,

$$
p(A) \cdot v=c_{0} v+A\left(c_{1} v+A\left(c_{2} v+\cdots\right)\right)
$$

which uses only matrix-vector products but no matrix-matrix products.
Hint: degree (\ldots, \mathbf{x}) returns the degree of a polynomial expression $p(x)$.

Exercise 8.7: Matrix representation of a linear mapping.

Let a linear mapping $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be given in form of a procedure psi.

- Design another procedure which returns its coefficient matrix $A \in \mathbb{R}^{m \times n}$ with respect to the canonical bases in \mathbb{R}^{n} and \mathbb{R}^{m}.

Remark: We consider ψ to be 'black box', i.e., we only know that it represents a linear mapping. But we need to know what the dimensions m and n are. For this exercise you may simply assume that m and n are a priori known.

Exercise 8.8: Visualization of linear mappings.

a) With plots [arrow] you can draw arrows. Use this to visualize the behavior of a linear mapping $\psi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ represented by a matrix $A \in \mathbb{R}^{3 \times 3}$, by drawing the parallelepiped spanned by the image of the unit vectors $(1,0,0),(0,1,0)$ and $(0,0,1)$ under the mapping (these are the columns of $A)$. Choose an example and produce a nice plot.
(You may first work on the two-dimensional case.)
b) (*) Another visualization is provided by the image of the unit sphere under the mapping. To this end we use spherical coordinates,

$$
\begin{aligned}
& x=\cos \theta \cos \phi, \\
& y=\cos \theta \sin \phi, \\
& z=\sin \theta,
\end{aligned}
$$

with $\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \phi \in[-\pi, \pi]$, and use plot3d.
Produce a nice plot. Also use display to combine this with a plot of the unit sphere. Use different colors and set the option transparency=0.5 or similar.

Hint: With convert (..., list) you can convert a Vector into a list. For plotting, observe the role of the parameter scaling, which is relevant here.

