
Winfried Auzinger Sommersemester 2016
Dirk Praetorius 10. Mai 2016

Übungsaufgaben zur VU Computermathematik

Serie 9

Eine Kollektion verschiedener Problemstellungen, teilweise mit stofflichen Ergänzungen, entsprechend erläutert.

Exercise 9.1: Exception handling. A real sqrt implementation.

The try ... end try construct allows you to protect critical parts of your code, with a controlled error handling
by the catch branch if the try branch fails. 1

Example:

try

b := 1/a;

c := 1/d;

catch:

error "Division by zero!"

maybe some alternative computation here...

finally # (optional; if applicable)

print("The finally block is executed in any case.")

end try:

A simple application:

When sqrt(...) is called with a negative real argument you get an imaginary answer. Here we aim for a real
implementation which results into an error message in this case.

a) Provide such an alternative implementation of sqrt by means of a procedure rsqrt(...), and test it on the
function f from Ex. 6.2.

Hint: There is some odd behavior (at least in Maple 2015.1):

See what happens when you call f from 6.2 with an integer argument such that f is not well-defined. What
happens? Remedy: In your procedure rsqrt, replace sqrt(...) by evalf(sqrt(...)). Test.

b) Use your procedure rsqrt within a try-block, catching negative arguments.

Exercise 9.2: Some animations. Further tools from the plots package.

a) The function animate can be used to produce videos, i.e., a sequence of plots depending on a parameter. After
defining the corresponding plot structure, rendering of the animation is performed in an interactive way using
a context menu.

Consult ? animate (look at the examples). Use animate to visualize the behavior of the Taylor polynomials

1 + x + x2

2 + . . . + xn

n! for x ∈ [0, 3] and n = 1, 2, . . . (n is the parameter for the animation). Also, use an
example of your own choice.

1 Such a mechanism is implemented in many programming languages. This is often more useful than trying to avoid in advance, by
various if constructs, that an error occurs, in particular if there are several ‘critical operations’ or if you do not exactly know where
an exception may occur.

b) An animation of the evolution of a function can be generated using animatecurve.

Show some nice example.

c) Another way of generating a video is to produce several plot structures and to display them in an animated
way, using display with option insequence=true.

Choose a function f(t) and generate plots on intervals [0, T] with increasing values for T . Use the plot option
filled=true. Then, use display with option insequence=true to animate these plots.

This provides a visualization of the behavior of

∫ T

0
f(t) dt with increasing T .

d) Also check animate3d and show some nice example.

Remark: You can export your video in form of an animated .gif file.

Exercise 9.3: Solving a system of polynomial equations.

Consider the system of three polynomial equations

x1 + x2 + x3 = 1

4x2 x3 + 2x23 = 1

3x22 x3 + 9x2 x
2
3 + 3x33 = 1

in the three variables x1, x2, x3. We represent the system in form of a list containing these three equations.

a) Solve this system. You will get an answer in terms of an expression of the form

RootOf(12*_Z^4-24*_Z^2+16*_Z-3)

b) What does this RootOf expression represent? Use allvalues and evalf to find numerical values for all real
solutions, and verify that they are correct.

Exercise 9.4: A property of quadratic equations, investigated experimentally.

Consider the quadratic equation

z2 + b z + c = 0, with b > 0 and c > 0.

a) It can be shown that both solutions z1,2 of such an equation have negative real parts. Here we do not try to
prove this, but we check it by experiment.

To verify the above assertion, use plot3d to plot the real part of both solution over some range of values b > 0
and c > 0.

b) Make an analogous plot for the imaginary parts and explain the outcome.

c) Let c = 1. Use plots[complexplot] to visualize the movement of both solutions of the quadratic equation in
the complex plane when the parameter b varies (i.e., starts at b = 0 and increases).

Furthermore, use plots[display] with option insequence=true to produce a video of this movement

(actually, these are two curves in the complex plane).

Exercise 9.5: Formatted input.

Assume that the coefficients of a multivariate polynomial expression are encoded in a text file in a way as shown
here (this example refers to six variables x1, . . . , x6):

[0,2,0,1,0,1] 7

[0,1,1,1,1,0] 6

[0,0,2,1,0,0] -2

[2,0,0,0,0,0] 3

[0,0,0,0,0,0] -1

Each of the lines represents a power product, where the entries in the list specify the powers with which the
variables x1, . . . , x6 occur, and the number at the end of the line specifies a multiplicative factor. I.e., this text file
represents the expression

7x22 x4 x6 + 6x2 x3 x4 x5 − 2x23 x4 + 3x21 − 1 .

• Design a procedure readmultinom(filename,var) which reads the data from such a file and returns the corre-
sponding multinomial expression. var is the variable name (e.g., var=x).

Hint: Use readline followed by sscanf. Note that with the %a format specifier, a list is scanned as a single object.
For the coefficient at the end of the line, use %d. You may assume that the format is correct, in particular, that
all lists have the same length (which you have to determine in a first step, when scanning the first line).

Test with the above example and also another one.

Exercise 9.6: Scanning a multinomial expression.

A converse of Ex. 9.5:

Extracting the coefficients and exponents from a given multinomial expression (e.g., for saving them to a text file)
is a slightly more complicated operation. You need some understanding about its internal representation.

We may proceed as follows: At first we only consider a single term of the form

c xp11 · · ·x
pn
n , e.g., 2*x[1]*x[3]^2.

We assume that n, the number of variables x[1],x[2],. . . involved, is a priori known. Our job is to extract c and
p1, . . . , pn. We may realize this in the following way:

• Use subs(...) to replace all variables x1, . . . , xn by 1. This results in the value c.

• Use degree(...) with respect to all the variables xj in order to find the exponents pj (which may be also
be zero).

a) Realize this in form of a procedure which returns the expression [p1, . . . , pn], c .

b) In order to learn how to handle a sum of such terms (i.e., a general multinomial expression) m, find out
by considering some examples what you get from op(1,m), op(2,m),. . . ,op(nops(m),m) . Check how minus
signs are handled. What is op(0,m) ?

Exercise 9.7: Formatted output.

Assume that a system of multinomial expressions is given in form of a list of such expressions, e.g., as in Ex. 9.3.

• Store the data of the system to text files 2 in the same format as in Ex. 9.5. Each expression is to be stored on
a separate file, e.g., sys01.txt, sys02.txt,

Exercise 9.8: Using unapply (see lecture notes, part II); using .mpl files

As an example consider a given rational function r(x), e.g., r(x) = x
x2−x+1

. Assume we need some of its higher
derivatives for repeated use in a numerical algorithm. Then it will be inefficient to perform symbolic differentiation
again and again. Rather, we will statically store the ‘ready-cooked’ formula for such a derivative, e.g.

d5

dx5
x

x2 − x + 1
=

120 (x6 − 15x4 + 20x3 − 6x + 1)

(x2 − x + 1)6

a) Let the function r(x) represent the above (or some other) rational function. Use diff, normal, and unapply

to define a function r5(x) which returns the expression for the 5 - th derivative.

2 This will be useful, for instance, if the system is to be exported to external software like Matlab.

b) You can now use this function in your worksheet. But assume you want to use it in other worksheets. Of course
you may copy and paste the code, but a more flexible way ist to store it in a text file filename.mpl. Example:

save(r,r5,"rat.mpl")

Try this and look at the textfile rat.mpl. Then, restart your worksheet and perform

read("rat.mpl") or read("rat.mpl"):

See what happens and check that r and r5 are again defined.

c) You can also save variable definitions, procedures, or the code of complete worksheets.

Try the latter with a simple worksheet, using

File → Export As. . . → Maple Input (.mpl)

You can again read the code from the file. But the main application of this version is to run a Maple program
(which requires no user interaction) in batch mode (typically for longer jobs).

Try this on lva.student with a simple worksheet requiring no interactive input. Generate the .mpl file and
start your job using

$ maple filename.mpl

