Übungen zur Vorlesung Computermathematik

Serie 2

Aufgabe 2.1. Write a function which calculates and returns for a vector $x \in \mathbb{C}^{n}$ and some $1 \leq p<\infty$ the ℓ_{p}-norm

$$
\|x\|_{p}:=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p} .
$$

The function has to be implemented in two different ways: First, avoid loops and use appropriate vector functions and arithmetic instead; second, use loops and scalar arithmetic.

Aufgabe 2.2. Write a function tensor which returns for $n \in \mathbb{N}$ the chessboard-tensor $B \in \mathbb{N}^{n \times n \times n}$ with

$$
B_{j k \ell}= \begin{cases}0 & \text { if } j+k+\ell \text { even } \\ 1 & \text { if } j+k+\ell \text { odd }\end{cases}
$$

The function has to be implemented in two different ways: First, avoid loops and use appropriate vector functions and arithmetic instead; second, use loops and scalar arithmetic.

Aufgabe 2.3. Let $p(x)=\sum_{j=0}^{n} a_{j} x^{j}$ be a polynomial with coefficient vector $a \in \mathbb{C}^{n+1}$. Write a MATLAB-function which takes a and returns the coefficient vector of the derivative p^{\prime}.
The function has to be implemented in two different ways: First, avoid loops and use appropriate vector functions and arithmetic instead; second, use loops and scalar arithmetic. Your function should work for column and row vectors a and should always return a column vector; see, e.g., help reshape Think about how you can test your code! What are suitable test-examples?

Aufgabe 2.4. Write a MATLAB-function which calculates for given polynomials $p(x)$ and $q(x)$ the result $r(x)=p(x)+q(x)$ and returns the coefficient vector $r \in \mathbb{C}^{n+1} . r(x)$ should be a polynomial of minimal degree, i.e., for the leading coefficient there holds $r_{n+1} \neq 0$. The function has to be implemented in two different ways: First, avoid loops and use appropriate vector functions and arithmetic instead; second, use loops and scalar arithmetic. Think about how you can test your code! What are suitable test-examples?

Aufgabe 2.5. Let $p(x)=\sum_{j=0}^{n} a_{j} x^{j}$ be a polynomial with coefficient vector $a \in \mathbb{C}^{n+1}$. Let $x=\left(x_{j k}\right) \in$ $\mathbb{C}^{M \times N}$ be a matrix of evaluation points. Write a MATLAB-function which calculates and returns the evaluation matrix $\left(p\left(x_{j k}\right)\right) \in \mathbb{C}^{M \times N}$. Your function should work for column and row vectors a. The function has to be implemented in two different ways: First, avoid loops and use appropriate vector functions and arithmetic instead; second, use loops and scalar arithmetic. Think about how you can test your code! What are suitable test-examples?
Hint: You can use reshape to reduce the case of a matrix x to the case of a vector. Note that the evaluation points can be complex-valued.

Aufgabe 2.6. MATLAB offers a variety of ways to measure the run-time of a function resp. calculation. One easy way is the function tic-toc. In this case, tic starts the timing and t=toc saves the passed time in t ; see help tic resp. help toc. Write a MATLAB-function which measures the run-time of at least 2 of the previous exercises. For each exercise, use different input-sizes to compare the run-time of the two different implementations (loops vs. vector arithmetic). Use fprinft to display your results.

Aufgabe 2.7. The integral $\int_{a}^{b} f d x$ of a continuous function $f:[a, b] \rightarrow \mathbb{R}$ can be approximated by so called quadrature formulas

$$
\int_{a}^{b} f d x \approx \sum_{j=1}^{n} \omega_{j} f\left(x_{j}\right)
$$

where one fixes some vector $x \in[a, b]^{n}$ with $x_{1}<\cdots<x_{n}$ and approximates the function f by some polynomial $p(x)=\sum_{j=1}^{n} a_{j} x^{j-1}$ of degree $\leq n-1$ with $p\left(x_{j}\right)=f\left(x_{j}\right)$ for all $j=1, \ldots, n$. The weights ω_{j} can be calculated by the assumption

$$
\int_{a}^{b} q d x=\sum_{j=1}^{n} \omega_{j} q\left(x_{j}\right) \quad \text { for all polynomials } q \text { of degree } \leq n-1
$$

This is equivalent to the solution of the linear system

$$
\frac{b^{k+1}}{k+1}-\frac{a^{k+1}}{k+1}=\int_{a}^{b} x^{k} d x=\sum_{j=1}^{n} \omega_{j} x_{j}^{k} \quad \text { für alle } k=0, \ldots, n-1 .
$$

Why is this the case? Write a function integrate which takes (he (column or row) vector $x \in[a, b]^{n}$ and the function value vector $f(x)$, and which returns the approximated value of the integral. Therefore, build the linear system as efficiently as possible and solve it with the backslash-operator. With the aid of the resulting vector $\omega \in \mathbb{R}^{n}$ one obtains the approximated integral as scalar product with the vector $f(x)$. Think about how you can test your code! What are suitable test-examples? Avoid loops and use appropriate vector functions and arithmetic instead.

Aufgabe 2.8. Write a MATLAB function saveMatrix which takes a matrix $A \in \mathbb{R}^{M \times N}$ and writes it into an ASCII file matrix. dat via fprintf (see also help fopen). Use $\% 1.16 e$ for fprintf to write the matrix coefficients! (Why does this make sense?) Optionally, the function takes a string name and writes the matrix to the ASCII file name.dat. To verify your code, write a MATLAB script which creates a random matrix $A \in \mathbb{R}^{M \times N}$ and writes it to an ASCII file A. dat. Load the matrix via B = load('A.dat') and check whether A and B coincide.

