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Serie 3

Aufgabe 3.1. Aitken’s A2-method is a method for convergence acceleration of sequences. For an injec-
tive sequence (x,) with = lim,_,~ x,, one defines
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Under certain assumptions for the sequence (z,,) it then holds
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i.e., the sequence (y,) converges faster to  than (z,). Write a MATLAB function aitken which takes a
vector € RY and returns a vector y € RV~2. Use suitable loops. Further, write an alternative MATLAB
function aitken_vec which calculates the vector y € RY~2 with suitable vector arithmetic instead of
loops. Think about how you can test your code! What happens for a geometric sequence x,, := ¢" with
0<g<1?

Aufgabe 3.2. Write a MATLAB function diffaitken, which computes the approximation of the deri-
vative of a function f in a point z through the foward and central difference quotient

flz+h) = fz) fl+h) = flz—h)
h 2h )

o(h) = resp. ®(h) =
Given the function f, the point z and an initial parameter hy > 0, the function returns an approximation
of the derivative obtained as follows: For n > 1, compute h,, := 2~ ("~Vhg. z,, := ®(h,). Further, compute
the sequence of the Aitken-extrapolation which is given by ¢,, := z,, fir n = 1,2, and ¢, := y,_o for
n > 3. In this case y,, denote the sequence from exercise |3.1

Additionally, compute the experimental rate of convergence for the foward and central difference quotient
with and withoud Aitken-extrapolation. Visualize your results. What rates do you get?

Aufgabe 3.3. Consider the real nodes z; < --- < z,, and function values y; € R. Then, linear algebra
provides a unique polynomial p(t) = Z;L:1 a;jt?=1 of degree n—1, such that p(z;) = y; forallj = 1,...,n.
Suppose a fixed evaluation point ¢t € R. The Newille-algorithm is able to compute the point evaluation
p(t) without computing the vector of coefficients a € R™. It consists of the following steps: First, define

for j,m € N with m > 2 and j +m < n + 1 the values

Pj1 =Yy,
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pj,m .

This implies p(t) = p1,,. Write a MATLAB-function neville which computes p(t) for a given evaluation



point ¢ € R and vectors z,y € R™. To do that, you can use the following scheme

yi. = piag — P2 — P13 — ... — Din = Dp(t)
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One easy way to implement this scheme is by building a matrix with entries (p;..m,) For testing,

take an arbitrary polynomial resp. nodes, and compute y; = p(z;).

n
j,m=1"

Aufgabe 3.4. One can implement the Neville-algorithm from exercise wihout using additional me-
mory. Therfore, instead of storing the values (p;jm)7,,—; in a matrix, you can overwrite suitable entries
in the given vector y. Write a MATLAB-function neville2 which realizes the Neville-algorithm wihtout
using additional memory.

Aufgabe 3.5. One efficient way to compute the foward difference quotient ®(h) from exercise is the
Richardson-extrapolation of the foward difference quotient. The (theoretical!) idea is the following: Use
the values ®(hy), ..., ®(h,) to compute an interpolation polynimomial of degree n — 1 with (h;, ®(h;))
fiir j = 1,...,n. Then, there holds p,(h) = ®(h) and one can use the Newville-algorithm to compute the
point evaluation at h = 0. (A proof of convergence for this scheme is given in the lecture Numerischen
Mathematik.) Write a function richardson which computes an approximation of f’(z) for a given
function-handle f, evaluation point x € R, step-size hy and tolerance 7 > 0. First, define h,, := 27 "hg
and Yy, := p,(0). Then, the function should return the first y,4+1 =~ f'(z) which satisfies

T, falls |ynt1] < T,

|yn - yn-i-ll <
T |Ynt1] else.

Use the function neville from exercise 3.3

Aufgabe 3.6. One possible algorithm for eigenvalue computations is the Power Iteration. It approxi-
mates (under certain assumptions) the eigenvalue A € R with the greatest absolute value of a symmetric
matrix A € R™ "™ as well as the corresponding eigenvector x € R™. The algorithm is obtained as follows:
Given a vector (0 € R"\{0}, e.g., (®) = (1,...,1) € R™, define the sequences

Ax(kfl) n
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where [ly[l2 == (X7, yf—)l/ ? denotes the Euclidean norm. Then, under certain assumptions, (A) con-

verges towards A, and (z(®)) converges towards an eigenvector associated to A (in an appropriate sense).
Write a MATLAB function poweriteration, which, given a matrix A, a tolerance 7 and an initial vector
20 verifies whether the matrix A is symmetric. If this is not the case, then the function displays an
error message and terminates (use error). Otherwise, it computes (A) and (z(®)) until

if | A\g] <
142® — Az®|ly <7 and [he_y — Al <4 il <7,
7| Ak| else,

and returns A, and z(*). Realize the function in an efficient way, i.e., avoid unnecessary computations
(especially of matrix-vector products) and storage of data. Then, compare poweriteration with the
built-in MATLAB function eig. Use the function norm, as well as MATLAB arithmetic.



Aufgabe 3.7. Let f : [a,b] = R be a continuous function. For N € N and z; := a + j (b — a)/N with

7 =0,...,N, we define the composite midpoint rule

b—a

IN =
J=1

Since Iy is a Riemann sum, we know that

b
lim Iy = .
Ngnoo N /a f dr

For f € C?[a,b], one can even show that

/bfdx—IN‘ — O(N72).

Write a MATLAB function

int = midpointrule(a,b,f,n)

N
~ (@i +25)/2).

which, for the sequence N = 2¥ and k = 0,...,n , computes and returns the vector int of the cor-
responding values Iy. Think about how you can test your code! What are suitable test examples?
Experimentally verify the order of convergence order given in (3.7). Hint: Test your quadrature with

polynomials of different degree. Calculate the result analytically. What do you notice?

Aufgabe 3.8. Modify the function midpointrule from exercise [3.7]in the following way.

e If midpointrule(f,n) is called without the interval boundaries a, b, then f_ll f dx is calculated.

e The call midpointrule(f,n,a,b) shall return as in Aufgabe 3.4 the vector Iy = f: f dx. Take
care that in the case b < a it holds ff fdx=— fba f dz. In this case additionally give a warning.

e In the case midpointrule(f,n,a,b, ’nodes’), additionally to the vector int, the vector nodes of

the points x; with j = 0,...2" shall be returned.



