
Dirk Praetorius Sommersemester 2017
Winfried Auzinger 22.03.2017

Übungen zur Vorlesung
Computermathematik

Serie 3

Aufgabe 3.1. Aitken’s ∆2-method is a method for convergence acceleration of sequences. For an injec-
tive sequence (xn) with x = limn→∞ xn one defines

yn := xn −
(xn+1 − xn)2

xn+2 − 2xn+1 + xn
(1)

Under certain assumptions for the sequence (xn) it then holds

lim
n→∞

x− yn
x− xn

= 0,

i.e., the sequence (yn) converges faster to x than (xn). Write a MATLAB function aitken which takes a
vector x ∈ RN and returns a vector y ∈ RN−2. Use suitable loops. Further, write an alternative MATLAB
function aitken vec which calculates the vector y ∈ RN−2 with suitable vector arithmetic instead of
loops. Think about how you can test your code! What happens for a geometric sequence xn := qn with
0 < q < 1?

Aufgabe 3.2. Write a MATLAB function diffaitken, which computes the approximation of the deri-
vative of a function f in a point x through the foward and central difference quotient

Φ(h) =
f(x+ h)− f(x)

h
resp. Φ(h) =

f(x+ h)− f(x− h)

2h
.

Given the function f , the point x and an initial parameter h0 > 0, the function returns an approximation
of the derivative obtained as follows: For n ≥ 1, compute hn := 2−(n−1)h0, xn := Φ(hn). Further, compute
the sequence of the Aitken-extrapolation which is given by φn := xn für n = 1, 2, and φn := yn−2 for
n ≥ 3. In this case yn denote the sequence from exercise 3.1.
Additionally, compute the experimental rate of convergence for the foward and central difference quotient
with and withoud Aitken-extrapolation. Visualize your results. What rates do you get?

Aufgabe 3.3. Consider the real nodes x1 < · · · < xn and function values yj ∈ R. Then, linear algebra
provides a unique polynomial p(t) =

∑n
j=1 ajt

j−1 of degree n−1, such that p(xj) = yj for all j = 1, . . . , n.
Suppose a fixed evaluation point t ∈ R. The Neville-algorithm is able to compute the point evaluation
p(t) without computing the vector of coefficients a ∈ Rn. It consists of the following steps: First, define
for j,m ∈ N with m ≥ 2 and j +m ≤ n+ 1 the values

pj,1 := yj ,

pj,m :=
(t− xj)pj+1,m−1 − (t− xj+m−1)pj,m−1

xj+m−1 − xj
.

This implies p(t) = p1,n. Write a MATLAB-function neville which computes p(t) for a given evaluation

point t ∈ R and vectors x, y ∈ Rn. To do that, you can use the following scheme

y1 = p1,1 −→ p1,2 −→ p1,3 −→ . . . −→ p1,n = p(t)
↗ ↗ ↗

y2 = p2,1 −→ p2,2
↗ ↗

y3 = p3,1 −→
...

...
...

... ↗
yn−1 = pn−1,1 −→ pn−1,2

↗
yn = pn,1

(2)

One easy way to implement this scheme is by building a matrix with entries (pj,m)nj,m=1. For testing,
take an arbitrary polynomial resp. nodes, and compute yj = p(xj).

Aufgabe 3.4. One can implement the Neville-algorithm from exercise 3.3 wihout using additional me-
mory. Therfore, instead of storing the values (pj,m)nj,m=1 in a matrix, you can overwrite suitable entries
in the given vector y. Write a MATLAB-function neville2 which realizes the Neville-algorithm wihtout
using additional memory.

Aufgabe 3.5. One efficient way to compute the foward difference quotient Φ(h) from exercise 3.2 is the
Richardson-extrapolation of the foward difference quotient. The (theoretical!) idea is the following: Use
the values Φ(h0), . . . ,Φ(hn) to compute an interpolation polynimomial of degree n− 1 with (hj ,Φ(hj))
für j = 1, . . . , n. Then, there holds pn(h) ≈ Φ(h) and one can use the Neville-algorithm to compute the
point evaluation at h = 0. (A proof of convergence for this scheme is given in the lecture Numerischen
Mathematik.) Write a function richardson which computes an approximation of f ′(x) for a given
function-handle f , evaluation point x ∈ R, step-size h0 and tolerance τ > 0. First, define hn := 2−nh0
and yn := pn(0). Then, the function should return the first yn+1 ≈ f ′(x) which satisfies

|yn − yn+1| ≤

{
τ, falls |yn+1| ≤ τ,
τ |yn+1| else.

Use the function neville from exercise 3.3.

Aufgabe 3.6. One possible algorithm for eigenvalue computations is the Power Iteration. It approxi-
mates (under certain assumptions) the eigenvalue λ ∈ R with the greatest absolute value of a symmetric
matrix A ∈ Rn×n as well as the corresponding eigenvector x ∈ Rn. The algorithm is obtained as follows:
Given a vector x(0) ∈ Rn\{0}, e.g., x(0) = (1, . . . , 1) ∈ Rn, define the sequences

x(k) :=
Ax(k−1)

‖Ax(k−1)‖2
and λk := x(k) ·Ax(k) :=

n∑
j=1

x
(k)
j (Ax(k))j for k ∈ N,

where ‖y‖2 :=
(∑n

j=1 y
2
j

)1/2
denotes the Euclidean norm. Then, under certain assumptions, (λk) con-

verges towards λ, and (x(k)) converges towards an eigenvector associated to λ (in an appropriate sense).
Write a MATLAB function poweriteration, which, given a matrix A, a tolerance τ and an initial vector
x(0), verifies whether the matrix A is symmetric. If this is not the case, then the function displays an
error message and terminates (use error). Otherwise, it computes (λk) and (x(k)) until

‖Ax(k) − λkx(k)‖2 ≤ τ and |λk−1 − λk| ≤

{
τ if |λk| ≤ τ,
τ |λk| else,

and returns λk and x(k). Realize the function in an efficient way, i.e., avoid unnecessary computations
(especially of matrix-vector products) and storage of data. Then, compare poweriteration with the
built-in MATLAB function eig. Use the function norm, as well as MATLAB arithmetic.

Aufgabe 3.7. Let f : [a, b] → R be a continuous function. For N ∈ N and xj := a + j (b − a)/N with
j = 0, . . . , N , we define the composite midpoint rule

IN :=
b− a
N

N∑
j=1

f
(
(xj−1 + xj)/2

)
.

Since IN is a Riemann sum, we know that

lim
N→∞

IN =

∫ b

a

f dx.

For f ∈ C2[a, b], one can even show that∣∣∣ ∫ b

a

f dx− IN
∣∣∣ = O(N−2). (3)

Write a MATLAB function

int = midpointrule(a,b,f,n)

which, for the sequence N = 2k and k = 0, . . . , n , computes and returns the vector int of the cor-
responding values IN . Think about how you can test your code! What are suitable test examples?
Experimentally verify the order of convergence order given in (3.7). Hint: Test your quadrature with
polynomials of different degree. Calculate the result analytically. What do you notice?

Aufgabe 3.8. Modify the function midpointrule from exercise 3.7 in the following way.

• If midpointrule(f,n) is called without the interval boundaries a, b, then
∫ 1

−1 f dx is calculated.

• The call midpointrule(f,n,a,b) shall return as in Aufgabe 3.4 the vector IN ≈
∫ b

a
f dx. Take

care that in the case b < a it holds
∫ b

a
f dx = −

∫ a

b
f dx. In this case additionally give a warning.

• In the case midpointrule(f,n,a,b,’nodes’), additionally to the vector int, the vector nodes of
the points xj with j = 0, . . . 2n shall be returned.

