Übungen zur Vorlesung
 Computermathematik

Serie 3

Aufgabe 3.1. Aitken's Δ^{2}-method is a method for convergence acceleration of sequences. For an injective sequence $\left(x_{n}\right)$ with $x=\lim _{n \rightarrow \infty} x_{n}$ one defines

$$
\begin{equation*}
y_{n}:=x_{n}-\frac{\left(x_{n+1}-x_{n}\right)^{2}}{x_{n+2}-2 x_{n+1}+x_{n}} \tag{1}
\end{equation*}
$$

Under certain assumptions for the sequence $\left(x_{n}\right)$ it then holds

$$
\lim _{n \rightarrow \infty} \frac{x-y_{n}}{x-x_{n}}=0
$$

i.e., the sequence $\left(y_{n}\right)$ converges faster to x than $\left(x_{n}\right)$. Write a MATLAB function aitken which takes a vector $x \in \mathbb{R}^{N}$ and returns a vector $y \in \mathbb{R}^{N-2}$. Use suitable loops. Further, write an alternative MATLAB function aitken_vec which calculates the vector $y \in \mathbb{R}^{N-2}$ with suitable vector arithmetic instead of loops. Think about how you can test your code! What happens for a geometric sequence $x_{n}:=q^{n}$ with $0<q<1$?

Aufgabe 3.2. Write a MATLAB function diffaitken, which computes the approximation of the derivative of a function f in a point x through the foward and central difference quotient

$$
\Phi(h)=\frac{f(x+h)-f(x)}{h} \quad \text { resp. } \quad \Phi(h)=\frac{f(x+h)-f(x-h)}{2 h} .
$$

Given the function f, the point x and an initial parameter $h_{0}>0$, the function returns an approximation of the derivative obtained as follows: For $n \geq 1$, compute $h_{n}:=2^{-(n-1)} h_{0}, x_{n}:=\Phi\left(h_{n}\right)$. Further, compute the sequence of the Aitken-extrapolation which is given by $\phi_{n}:=x_{n}$ für $n=1,2$, and $\phi_{n}:=y_{n-2}$ for $n \geq 3$. In this case y_{n} denote the sequence from exercise 3.1 .
Additionally, compute the experimental rate of convergence for the foward and central difference quotient with and withoud Aitken-extrapolation. Visualize your results. What rates do you get?

Aufgabe 3.3. Consider the real nodes $x_{1}<\cdots<x_{n}$ and function values $y_{j} \in \mathbb{R}$. Then, linear algebra provides a unique polynomial $p(t)=\sum_{j=1}^{n} a_{j} t^{j-1}$ of degree $n-1$, such that $p\left(x_{j}\right)=y_{j}$ for all $j=1, \ldots, n$. Suppose a fixed evaluation point $t \in \mathbb{R}$. The Neville-algorithm is able to compute the point evaluation $p(t)$ without computing the vector of coefficients $a \in \mathbb{R}^{n}$. It consists of the following steps: First, define for $j, m \in \mathbb{N}$ with $m \geq 2$ and $j+m \leq n+1$ the values

$$
\begin{aligned}
p_{j, 1} & :=y_{j}, \\
p_{j, m} & :=\frac{\left(t-x_{j}\right) p_{j+1, m-1}-\left(t-x_{j+m-1}\right) p_{j, m-1}}{x_{j+m-1}-x_{j}} .
\end{aligned}
$$

This implies $p(t)=p_{1, n}$. Write a MATLAB-function neville which computes $p(t)$ for a given evaluation
point $t \in \mathbb{R}$ and vectors $x, y \in \mathbb{R}^{n}$. To do that, you can use the following scheme

One easy way to implement this scheme is by building a matrix with entries $\left(p_{j, m}\right)_{j, m=1}^{n}$. For testing, take an arbitrary polynomial resp. nodes, and compute $y_{j}=p\left(x_{j}\right)$.

Aufgabe 3.4. One can implement the Neville-algorithm from exercise 3.3 wihout using additional memory. Therfore, instead of storing the values $\left(p_{j, m}\right)_{j, m=1}^{n}$ in a matrix, you can overwrite suitable entries in the given vector y. Write a MATLAB-function neville2 which realizes the Neville-algorithm wihtout using additional memory.

Aufgabe 3.5. One efficient way to compute the foward difference quotient $\Phi(h)$ from exercise 3.2 is the Richardson-extrapolation of the foward difference quotient. The (theoretical!) idea is the following: Use the values $\Phi\left(h_{0}\right), \ldots, \Phi\left(h_{n}\right)$ to compute an interpolation polynimomial of degree $n-1$ with $\left(h_{j}, \Phi\left(h_{j}\right)\right)$ für $j=1, \ldots, n$. Then, there holds $p_{n}(h) \approx \Phi(h)$ and one can use the Neville-algorithm to compute the point evaluation at $h=0$. (A proof of convergence for this scheme is given in the lecture Numerischen Mathematik.) Write a function richardson which computes an approximation of $f^{\prime}(x)$ for a given function-handle f, evaluation point $x \in \mathbb{R}$, step-size h_{0} and tolerance $\tau>0$. First, define $h_{n}:=2^{-n} h_{0}$ and $y_{n}:=p_{n}(0)$. Then, the function should return the first $y_{n+1} \approx f^{\prime}(x)$ which satisfies

$$
\left|y_{n}-y_{n+1}\right| \leq \begin{cases}\tau, & \text { falls }\left|y_{n+1}\right| \leq \tau \\ \tau\left|y_{n+1}\right| & \text { else }\end{cases}
$$

Use the function neville from exercise 3.3 .
Aufgabe 3.6. One possible algorithm for eigenvalue computations is the Power Iteration. It approximates (under certain assumptions) the eigenvalue $\lambda \in \mathbb{R}$ with the greatest absolute value of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ as well as the corresponding eigenvector $x \in \mathbb{R}^{n}$. The algorithm is obtained as follows: Given a vector $x^{(0)} \in \mathbb{R}^{n} \backslash\{0\}$, e.g., $x^{(0)}=(1, \ldots, 1) \in \mathbb{R}^{n}$, define the sequences

$$
x^{(k)}:=\frac{A x^{(k-1)}}{\left\|A x^{(k-1)}\right\|_{2}} \quad \text { and } \quad \lambda_{k}:=x^{(k)} \cdot A x^{(k)}:=\sum_{j=1}^{n} x_{j}^{(k)}\left(A x^{(k)}\right)_{j} \quad \text { for } k \in \mathbb{N},
$$

where $\|y\|_{2}:=\left(\sum_{j=1}^{n} y_{j}^{2}\right)^{1 / 2}$ denotes the Euclidean norm. Then, under certain assumptions, $\left(\lambda_{k}\right)$ converges towards λ, and $\left(x^{(k)}\right)$ converges towards an eigenvector associated to λ (in an appropriate sense). Write a MATLAB function poweriteration, which, given a matrix A, a tolerance τ and an initial vector $x^{(0)}$, verifies whether the matrix A is symmetric. If this is not the case, then the function displays an error message and terminates (use error). Otherwise, it computes $\left(\lambda_{k}\right)$ and $\left(x^{(k)}\right)$ until

$$
\left\|A x^{(k)}-\lambda_{k} x^{(k)}\right\|_{2} \leq \tau \quad \text { and } \quad\left|\lambda_{k-1}-\lambda_{k}\right| \leq \begin{cases}\tau & \text { if }\left|\lambda_{k}\right| \leq \tau \\ \tau\left|\lambda_{k}\right| & \text { else }\end{cases}
$$

and returns λ_{k} and $x^{(k)}$. Realize the function in an efficient way, i.e., avoid unnecessary computations (especially of matrix-vector products) and storage of data. Then, compare poweriteration with the built-in MATLAB function eig. Use the function norm, as well as MATLAB arithmetic.

Aufgabe 3.7. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. For $N \in \mathbb{N}$ and $x_{j}:=a+j(b-a) / N$ with $j=0, \ldots, N$, we define the composite midpoint rule

$$
I_{N}:=\frac{b-a}{N} \sum_{j=1}^{N} f\left(\left(x_{j-1}+x_{j}\right) / 2\right)
$$

Since I_{N} is a Riemann sum, we know that

$$
\lim _{N \rightarrow \infty} I_{N}=\int_{a}^{b} f d x
$$

For $f \in C^{2}[a, b]$, one can even show that

$$
\begin{equation*}
\left|\int_{a}^{b} f d x-I_{N}\right|=\mathcal{O}\left(N^{-2}\right) \tag{3}
\end{equation*}
$$

Write a MATLAB function

```
int = midpointrule(a,b,f,n)
```

which, for the sequence $N=2^{k}$ and $k=0, \ldots, n$, computes and returns the vector int of the corresponding values I_{N}. Think about how you can test your code! What are suitable test examples? Experimentally verify the order of convergence order given in 3.7). Hint: Test your quadrature with polynomials of different degree. Calculate the result analytically. What do you notice?

Aufgabe 3.8. Modify the function midpointrule from exercise 3.7 in the following way.

- If midpointrule (f, n) is called without the interval boundaries a, b, then $\int_{-1}^{1} f d x$ is calculated.
- The call midpointrule ($\mathrm{f}, \mathrm{n}, \mathrm{a}, \mathrm{b}$) shall return as in Aufgabe 3.4 the vector $I_{N} \approx \int_{a}^{b} f d x$. Take care that in the case $b<a$ it holds $\int_{a}^{b} f d x=-\int_{b}^{a} f d x$. In this case additionally give a warning.
- In the case midpointrule ($\mathrm{f}, \mathrm{n}, \mathrm{a}, \mathrm{b}$, ' nodes') , additionally to the vector int, the vector nodes of the points x_{j} with $j=0, \ldots 2^{n}$ shall be returned.

