
Winfried Auzinger Sommersemester 2017
Dirk Praetorius 03./04. Mai 2017

Übungsaufgaben zur VU Computermathematik

Serie 6

Exercise 6.1: Limits and infinite series.

a) Compute the following limits or infinite series:

lim
x→ 0

ex − 1

x
lim
x→ 0

e|x| − 1

x
lim
n→∞

(n− 1

n+ 1

)n
∞∑
k=1

1

k
lim
n→∞

(n∑
k=1

1

k
− lnn

)
(is this finite?)

∞∑
k=1

1

k 2

∞∑
k=1

1

k 22

b) Geometric series: First declare that x represents some real value ∈ (−1, 1) via

assume(x>-1,x<1)

Now, compute the values of the following series:

∞∑
k=1

xk
∞∑
k=1

k2 xk
∞∑
k=1

k22 xk

c) Some further series (maybe you already know the results): 5

∞∑
k=1

(−1)k+1

k

∞∑
k=1

(−1)k+1

k2

∞∑
k=0

(
c

k

)
xk for c arbitrary, x ∈ (−1, 1)

Exercise 6.2: Calculus with real functions.

a) Use Maple as a computational tool for analyzing the real function (Kurvendiskussion)

f(x) = ln(x2 +
√

3x+ 1)

including nice plots of the function and its first and second derivatives.

b) Compute the indefinite integral of the function

f(x) =
1

1 + x6

c) (∗) Verify that the result obtained in b) is indeed correct by differentiating it. Use simplify – or
whatever turns out to be useful (this appears not to be straightforward).

5 Here,

(
c

k

)
=

c(c− 1) · · · (c− k + 1)

k!
is the generalized binomial coefficient, a polynomial of degree k in the variable

c ∈ R. Use binomial.

Exercise 6.3: Taylor expansion.

a) Use taylor to compute the Taylor expansion up to degree n = 10 about x = 0 for the function

f(x) =
√

1 + x

and verify that this is in compliance with the binomial series expansion from Exercise 6.1 c).

b) Use convert(...,polynom) to convert the Taylor expansion from a) into a polynomial p10(x) of
degree n = 10. Plot this polynomial together with f(x), e.g., first for x ∈ [0, 1] and then for x ∈ [0, 1.1].

What do you conclude from this plot? Also try to increase degree of the Taylor polynomial, e.g., up
to n = 20. What do you observe?

c) (∗) The convergence of these Taylor approximations pn(x) of degree n, for n→∞, at x = 1 somewhat
delicate to decide (of course, the answer to this question is well known).

Investigate this via numerical experiment, using evalf to compute pn(1) − f(1) up to n = 100 or
even higher. What do you observe? Can you ‘decide’ on convergence for n → ∞ on the basis of this
numerical experiment?

Exercise 6.4: Taylor approximation.

Let f be a function with at least n+1 continuous derivatives f ′, f ′′, . . . , f (n+1). For the Taylor polynomial
pn(x;x0) of degree n w.r.t. some point x0, we know

f(x)− pn(x;x0) =
1

n!

∫ x

x0

f (n+1)(ξ) (x− ξ)n dξ

a) Design a function tayerr which expects a function f , x0, x, and n as its arguments and which evaluates
this error integral. Choose an example to test its correctness.

b) Taylor polynomials are often used for practical numerical approximation of function values. For the
function f(x) from Exercise 6.3 this is not necessary since this can be directly evaluated in an accurate
way. Now we consider the function

f(x) =
√

1 + x− 1

satisfying f(0) = 0.

Set Digits:=10 and use evalf to evaluate f(x) numerically for x = 2.0−10 and x = 2.0−20. Compare
the results with the ‘exact’ values obtained by setting Digits:=20, and compute the relative errors. We
may expect 10 correct digits, i.e., a relative error somewhere near 10−10. What do you observe? 6

c) Here, Taylor approximation helps. Use the formula from a) to decide what degree n you need such
that the Taylor approximation pn(x; 0) has a relative approximation error ≈ 10−10 at x = 2.0−10 and
x = 2.0−20, respectively. Test these approximations using Digits:=10.

d) Same question as in b) for x = 0.5. What degree n would be required here? Anyway, is Taylor appro-
ximation required in this case in order to get 10 correct digits?

6 You learn more about this effect in a numerical analysis course.

Exercise 6.5: A function defined in a piecewise way.

We consider the functions Tn : R→ R defined by 7

Tn(x) =

{
cos(n arccosx), |x| ≤ 1

cosh(n arcoshx), |x| > 1
(n ∈ N0)

a) Design a function T which expects x and n as its arguments and which returns Tn(x). Use ifelse.
What happens if you call this function with a symbolic or a numerical argument x ?

b) Set, e.g., n = 5 and try plot(T(x,n),x=-1.1..1.1). What do you observe?

Then, try plot(’T(x,n)’,x=-1.1..1.1). Can you explain this effect?

c) Can you differentiate your function T ?

d) Use the ? piecewise construct to define the same function. Call T(x,n) and see what happens. Can
you differentiate this function?

Try plot(T(x,n),x=-1.1..1.1).

e) (∗) Actually, Tn(x) is a polynomial of degree n, the so-called Chebyshev polynomial of the first kind.

Verify this by playing around with cos(n arccosx) and cosh(n arcoshx), e.g., for n = 5, using expand

and simplify[trig].

Exercise 6.6: A sequence of functions defined in a recursive way.

Functions or procedures can be defined recursively. As a very simple example, we consider the sequence of
polynomials defined by T0(x) = 1, T1(x) = x, and 8

Tn(x) = 2 xTn−1(x)− Tn−2(x) for n ≥ 2

a) Implement Tn(x) in form of a recursive Maple function. Use ifelse.

b) Implement Tn(x) in form of a recursive Maple procedure. Use proc and if ... else ... end if.

c) Check the running time for evaluation of, e.g., T30(x) for both version. For this purpose, use the timer:

> n:=30; start:=time(): T(x,n); runtime:=time()-start;

d) Repeat b), c), adding the declaration option remember: immediately after proc(...). What do you
observe?

Hint: option remember activates a so-called remember table. Each already computed function value
is stored in an internal table (this requires some additional memory). Each time a function value is
computed within the recursion, a table lookup is performed. If this value already has been computed,
it is simply copied from the table.

Can you explain why the version with remember table runs much faster? Argue that the implementations
a) and b) are stupid.

e) Actually, implementing this in form of a recursion is an overkill. You can realize this by a simple do

loop.

Implement this version in form of a procedure and compare the running time with that of version d),
e.g., for n = 1000.

7 For some odd reason, the Maple implementation of arcosh has the name arccosh.

Remark: arccoshx is complex for x < −1, but cosh(arccoshx) is again real.
8 These functions are identical with the functions Tn(x) from Exercise 6.5.

Exercise 6.7: An animated plot.

a) Use plots[animate] to produce a video displaying the functions Tn(x) from Exercise 6.6 for x ∈ [−1, 1]
and n from 0 to 20.

Hint: Use ’f(x,n)’ instead of f(x,n). With right mouse click on the initial frame you get access to
the control panel where you can start the animation.

b) Increase the resolution of the plot via setting the paramater numpoints to 1000. Also, play with the
other plot parameters in order to generate a nice animation. Export your animation in form of an
animated .gif file.

c) You can also combine several single plots in the following way:

p[1] := plot(...): # save first plot structure

p[2] := plot(...): # save second plot structure

...

plots[display](p[1],p[2],...)

Use such a version to display several of the T (x, n) in a single plot. With the option insequence=true,
display again produces an animated plot.

d) Repeat c) using different colors for the different plots s.

Hint: There are many ways to set the color. For instance, you may use the plot/color option together
with the random number generator to produce random RGB values:

plot(...,color=ColorTools:-Color([rand()/10^12,rand()/10^12,rand()/10^12])

Exercise 6.8: Graphics packages.

Check the contents of the packages ? plots and ? plottools. Try some examples and prepare a presen-
tation.

