
Winfried Auzinger Sommersemester 2017
Dirk Praetorius 10./11. Mai 2017

Übungsaufgaben zur VU Computermathematik

Serie 7

Here we mainly concentrate on the use of the data structures Vector and Matrix.

Exercise 7.1: Matrix representation of a linear system.

Assume that a list is given containing m linear equations with integer coefficients in the n indexed variables
x[k], k = 1 . . . n.

Example (m = 2, n = 3):

[2*x[1]+x[2]-3,x[1]-x[3]+4]

represents the system of linear equations

2x1 + x2 = 3

x1 − x3 = −4

i.e., Ax = b, with

A =

 2 1 0

1 0 −1

 , b =

 3

−4

a) Design a procedure which expects such a list as its argument and which returns the sequence A, b in

form of a Matrix and a Vector.

Hint: Use ? coeff to extract the coefficients of the x[k].

b) Design a procedure for the inverse operation.

Remark: For a) it would be somewhat tricky to detect in an automatic way what the value of n (the
number of variables) is. Therefore you may specify n as an additional argument to your procedure.

Exercise 7.2: Matrix representation of a quadratic form.

Assume that a quadratic form q : Rn → R, i.e., a homogenous polynomial of degree 2 in the n indexed
variables x[k], k = 1 . . . n, is given (with integer coefficients).

Example (n = 3):

5*x[1]^2+4*x[1]*x[2]-x[2]*x[3]-4*x[3]^2

a) Design a procedure which expects such an expression as its argument and which returns the unique
symmetric integer n×n - matrix Q such that 9 q(x) = 1

2
xT ·Q · x.

9 Here, x =

x1

x2

...
xn

 is a column vector, and xT is the corresponding row vector.

Example (n = 3):

5x21 + 4x1 x2 − x2 x3 − 4x23 = 1
2
xT ·Q · x, with Q =

10 4 0

4 0 −1

0 −1 −8

Hint: Use coeff(...,2) and coeff(...,coeff(...)). Again, use n as an additional argument to
your procedure.

For testing examples, choose n, declare X:=Vector(n,symbol=x), and use LinearAlgebra[Transpose]
to convert X to a row vector.

b) Design a procedure for the inverse operation.

Exercise 7.3: Working with matrix functions.

A polynomial expression p(t) = c0 + c1 t + c2 t
2 + . . . can be applied to a quadratic matrix A, yielding

p(A) = c0I + c1A+ c2A
2 + . . . (try it). In applications (like iterative methods in linear algebra), however,

application of p(A) to a vector x is usually required, y := p(A)x, resulting in another vector y. This can
be realized in a more efficient way.

a) Design a procedure which expects a quadratic matrix, a polynomial function, and a vector as its argu-
ments and which returns the vector

p(A)x = c0 x+ c1Ax+ c2A
2x+ . . .

For this purpose, use an efficient Horner-like evaluation scheme:

p(A)x = c0 x+ A (c1 x+ A(. . .))

Note that this involves only matrix-vector multiplications.

Hint: Organize the evaluation using a do loop.

Use coeff. ? degree(...) returns the degree of a polynomial expression.

b) Extend your procedure by a parameter check: A must be quadratic, and the dimensions of A and x
must be compatible. Include two error exits with appropriate error messages.

c) Let r(x) = p(x)/q(x) be a rational function.

What is r(A) ? Design a procedure which computes r(A)x.

Hint: This is only well-defined if q(A) is invertible. Generate the matrix q(A) by a Horner-like scheme,
evaluate p(A)x and use LinearAlgebra[LinearSolve](M,b), which computes the solution y of a
linear system M y = b.

Exercise 7.4: A special class of matrices.

a) A quadratic matrix A is called a Toeplitz matrix if the values ajk of its entries only depend on j − k.
This means that the entries take constant values along each diagonal.

Example:

A =

1 0 2 4

3 1 0 2

4 3 1 0

0 4 3 1

Design a procedure istoeplitz which expects a quadratic matrix as its arguments and which returns
true if it is Toeplitz and false otherwise.

b) Topelitz matrices are examples of ‘data-sparse’ matrices: A Toeplitz matrix is uniquely defined by its
first row r and its first column c (this is still slightly redundant since r1 = c1.)

Assume that two vectors r and c of the same length (with r1 = c1) represent a Toeplitz matrix A.
Design a procedure which expects r, c, and another vector x as its arguments and which computes the
matrix-vector product Ax in a memory-efficient way, namely without explicitly building the matrix A.

Exercise 7.5: Multivariate Taylor expansion.

Let f : Rn → R be a smooth scalar function in n variables. The Taylor polynomial of degree 2 of such a
function about a point ξ ∈ Rn looks as follows:

p2(x; ξ) = f(ξ) + ∇f(ξ) · (x− ξ)︸ ︷︷ ︸
linear form

+ 1
2

(x− ξ)T · (∇T∇)f(ξ) · (x− ξ)︸ ︷︷ ︸
quadratic form

Here, x and ξ are to be interpreted as column vectors. ∇f is the gradient of f , i.e., the row vector
consisting of the first partial derivatives of f ,

∇f(ξ) =
(∂f
∂x1

(ξ), . . .
∂f

∂xn
(ξ)
)

(∇T∇)f is the so-called Hessian matrix of f ; it is symmetric and contains all second partial derivatives 10

of f ,

(∇T∇)f(ξ) =

∂2f

∂x21
(ξ) . . .

∂2f

∂x1 ∂xn
(ξ)

...
. . .

...

∂2f

∂xn ∂x1
(ξ) . . .

∂2f

∂x2n
(ξ)

a) Design a procedure ntay2 which expects a function f : Rn → R and a vector ξ ∈ Rn as its arguments

and which returns the expression p2(x; ξ) in the indexed variables x[1],...,x[n] representing x.

Remark: It will be fine if you realize this for the case n = 3 only. Here it is convenient to replace the
variables x[1],x[2],x[3] by x,y,z. Choose an example and compare with ? mtaylor.

b) Choose a function f : R2 → R and a point ξ ∈ R2 (e.g., ξ = (0, 0)), and use ? plot3d and display

to plot the graphs of the functions f and p2 in a single 3D plot. Choose a plot range around the
point ξ which is not too large (p2 is a local approximation to f). Furthermore, verify that all partial
derivatives of p2 up to degree 2 at x = ξ coincide with the corresponding derivatives of f . (This is true
by construction, according to the general principle underlying Taylor approximation.)

Exercise 7.6: Visualization of linear mappings via parametric plots.

An n×n - matrix A represents a linear mapping x 7→ Ax from Rn to Rn. We visualize the behavior of such
a mapping for n = 2 and n = 3.

a) Design a procedure expecting a numerical 2× 2 - matrix A and a positive integer M as its arguments.
Use polar coordinates to generate M equally spaced points (vectors) xj on the unit circle in R2. Apply
A to all these vectors, yj := Axj for j = 1 . . .M . Use plots[pointplot] with option style=line and
scaling=constrained to plot the resulting curve. Produce a nice plot, and also include the images of
the unit vectors x = (0, 1) and x = (1, 0).

Hint: Use display. How ‘smooth’ the resulting plot looks like will depend on A and M .

10 More precisely: This matrix is symmetric if all second partial derivatives are continuous, because in this case, ∂2f
∂xj ∂xk

=

∂2f
∂xk ∂xj

(Schwarz’ Theorem).

b) Realize a more ‘elegant’ version of such a procedure using a parametric version of ? plot.

Hint: First you have to understand how this works. Simplest example:

plot([sin(phi),cos(phi),phi=0..2*Pi],scaling=constrained)

generates a plot of the unit circle (this corresponds to the case A = I).

c) Generalize your procedure from b) to the case n = 3, i.e., produce a 3D plot of the image of the unit
ball in R3 under the mapping A.

Hint: Use ? plot3d. The syntax is for a parametric 3D plot is somewhat different from the 2D case.
Simplest example:

plot3d([cos(phi)*sin(theta),sin(phi)*sin(theta),cos(theta)],

phi=0..2*Pi,theta=0..Pi,scaling=constrained)

generates a 3D plot of the unit ball in R3.

d) (∗) Extend c), adding the images of the unit vectors to the plot.

Exercise 7.7: Verification of a simple identity in linear algebra.

Let A be an m×n - matrix (m rows, n columns). Here we assume that m > n.

a) Choose a matrix A with integer entries and full rank n (see also LinearAlgebra[Rank]). Check the
identity 11

Rm = image(A)⊕ kernel(AT)

where the two subspaces are orthogonal to each other, image(A) ⊥ kernel(AT).

Here, image(A) is the subspace of Rm spanned by the columns ofA (see LinearAlgebra[ColumnSpace]),
and kernel(AT) is the kernel of AT (see LinearAlgebra[NullSpace]).

b) Repeat a) for a matrix with rank < n.

Exercise 7.8: Your favorite package?

Look at the help page ? index, and select packages. Here you see a complete list of available packages.

Choose one of them, have a closer look, and prepare a small demo of its basic features.

There are many different packages. If you have no other special preference, you may take a closer look at
the package geometry. Aficionados of combinatorics may look at combinat (see also combstruct). And
there are many, many others.

11 The proof of this identity is easy. But here we just ‘verify’ it by experiment.

