Winfried Auzinger Sommersemester 2017
Dirk Praetorius 10./11. Mai 2017

Ubungsaufgaben zur VU Computermathematik

Serie 7

Here we mainly concentrate on the use of the data structures Vector and Matrix.

Exercise 7.1: Matrixz representation of a linear system.

Assume that a list is given containing m linear equations with integer coefficients in the n indexed variables

x[kl, k=1...n.
Example (m =2, n=3):

[2*%x[1]1+x[2]-3,x[1]-x [3]+4]
represents the system of linear equations

25(71+.T2:3

T —x3=—4

ie., Ax =10, with

sl ) )

a) Design a procedure which expects such a list as its argument and which returns the sequence A, b in
form of a Matrix and a Vector.

Hint: Use ? coeff to extract the coeflicients of the x[k].

b) Design a procedure for the inverse operation.

Remark: For a) it would be somewhat tricky to detect in an automatic way what the value of n (the
number of variables) is. Therefore you may specify n as an additional argument to your procedure.

Exercise 7.2: Matrixz representation of a quadratic form.

Assume that a quadratic form ¢: R — R, i.e., a homogenous polynomial of degree 2 in the n indexed
variables x[k], k = 1...n, is given (with integer coefficients).

Example (n = 3):

Bxx [1] "2+4*xx[1] *x[2] -x[2] *x [3] -4*x[3] "2

a) Design a procedure which expects such an expression as its argument and which returns the unique
symmetric integer nxn - matriz Q such that?® q(z) = %xT Q- x.

Ty
9 x2 . T . .
Here, z = . is a column vector, and z* is the corresponding row vector.

x n



Example (n = 3):

10 4 0
51:%—1—4%1962—@1:3—41:3:%xT-Q~:U, with @ = 4 0 -1
0 -1 -8
Hint: Use coeff(...,2) and coeff(...,coeff(...)). Again, use n as an additional argument to

your procedure.

For testing examples, choose n, declare X:=Vector (n, symbol=x), and use LinearAlgebra[Transpose]
to convert X to a row vector.

b) Design a procedure for the inverse operation.

Exercise 7.3: Working with matrix functions.

A polynomial expression p(t) = co + c1t + cot> + ... can be applied to a quadratic matrix A, yielding
p(A) = col + c; A+ A% + ... (try it). In applications (like iterative methods in linear algebra), however,
application of p(A) to a vector z is usually required, y := p(A) z, resulting in another vector y. This can
be realized in a more efficient way.

a) Design a procedure which expects a quadratic matriz, a polynomial function, and a vector as its argu-
ments and which returns the vector

p(A)r=cyr+ciAx+cy A%z + ...

For this purpose, use an efficient Horner-like evaluation scheme:
p(A)z =cox+A(ciz+ A(...))

Note that this involves only matrix-vector multiplications.

Hint: Organize the evaluation using a do loop.

Use coeff. 7 degree(...) returns the degree of a polynomial expression.

b) Extend your procedure by a parameter check: A must be quadratic, and the dimensions of A and x
must be compatible. Include two error exits with appropriate error messages.

c) Let r(z) = p(z)/q(x) be a rational function.
What is r(A) ? Design a procedure which computes r(A) x.

Hint: This is only well-defined if q(A) is invertible. Generate the matrix ¢(A) by a Horner-like scheme,
evaluate p(A)x and use LinearAlgebral[LinearSolve] (M,b), which computes the solution y of a
linear system My = b.

Exercise 7.4: A spectal class of matrices.

a) A quadratic matrix A is called a Toeplitz matriz if the values a;;, of its entries only depend on j — k.
This means that the entries take constant values along each diagonal.

Example:
1 0 2 4
310 2
A=
4 310
0 4 31

Design a procedure istoeplitz which expects a quadratic matrix as its arguments and which returns
true if it is Toeplitz and false otherwise.



b) Topelitz matrices are examples of ‘data-sparse’ matrices: A Toeplitz matrix is uniquely defined by its
first row r and its first column ¢ (this is still slightly redundant since r = ¢;.)

Assume that two vectors r and c of the same length (with r = c1) represent a Toeplitz matriz A.
Design a procedure which expects r, ¢, and another vector x as its arguments and which computes the
matriz-vector product Ax in a memory-efficient way, namely without explicitly building the matriz A.

Exercise 7.5: Multivariate Taylor expansion.

Let f: R"™ — R be a smooth scalar function in n variables. The Taylor polynomial of degree 2 of such a
function about a point £ € R" looks as follows:

pa(w:€) = f(&) + V&) (==& + 3@ =" - (VIV)f(§) (z—¢)

TV TV
linear form quadratic form

Here, x and £ are to be interpreted as column vectors. Vf is the gradient of f, i.e., the row vector
consisting of the first partial derivatives of f,

VIE) = (52O - 5 (©))

(VIV)f is the so-called Hessian matriz of f; it is symmetric and contains all second partial derivatives 1

of f,
r an aZf 3\
8_1,3(5) —axlaxn(@
(VIV)f(€) = : ' :
92 f 92 f
\ 8% @xl o 6_13,21(5) J

a) Design a procedure ntay?2 which expects a function f: R™ — R and a vector £ € R™ as its arguments
and which returns the expression py(x; &) in the indexed variables x[11,...,x[n] representing x.

Remark: It will be fine if you realize this for the case n = 3 only. Here it is convenient to replace the
variables x[1],x[2],x[3] by x,y,z. Choose an example and compare with ? mtaylor.

b) Choose a function f: R* — R and a point £ € R? (e.g., £ = (0,0)), and use ? plot3d and display
to plot the graphs of the functions f and ps in a single 3D plot. Choose a plot range around the
point & which is not too large (py is a local approximation to f). Furthermore, verify that all partial
derivatives of py up to degree 2 at x = £ coincide with the corresponding derivatives of f. (This is true
by construction, according to the general principle underlying Taylor approximation.)

Exercise 7.6: Visualization of linear mappings via parametric plots.

An nxn-matrix A represents a linear mapping =z — A x from R" to R"”. We visualize the behavior of such
a mapping for n = 2 and n = 3.

a) Design a procedure expecting a numerical 2 X 2 -matriz A and a positive integer M as its arguments.
Use polar coordinates to generate M equally spaced points (vectors) x; on the unit circle in R%. Apply
A to all these vectors, y; == Axj for j =1... M. Use plots[pointplot] with option style=line and
scaling=constrained to plot the resulting curve. Produce a nice plot, and also include the images of
the unit vectors x = (0,1) and x = (1,0).

Hint: Use display. How ‘smooth’ the resulting plot looks like will depend on A and M.

2
10 More precisely: This matrix is symmetric if all second partial derivatives are continuous, because in this case, % =
Oz,
8%f
Oz Oxj

(Schwarz’ Theorem).



b) Realize a more ‘elegant’ version of such a procedure using a parametric version of ? plot.
Hint: First you have to understand how this works. Simplest example:
plot([sin(phi),cos(phi),phi=0..2%Pi],scaling=constrained)

generates a plot of the unit circle (this corresponds to the case A = I).

c) Generalize your procedure from b) to the case n = 3, i.e., produce a 3D plot of the image of the unit
ball in R3 under the mapping A.

Hint: Use ? plot3d. The syntax is for a parametric 3D plot is somewhat different from the 2D case.
Simplest example:

plot3d([cos(phi)*sin(theta),sin(phi)*sin(theta),cos(theta)],
phi=0..2%Pi,theta=0..Pi,scaling=constrained)

generates a 3D plot of the unit ball in R3.

d) (%) Eztend c), adding the images of the unit vectors to the plot.

Exercise 7.7: Verification of a simple identity in linear algebra.

Let A be an m xn-matrix (m rows, n columns). Here we assume that m > n.

a) Choose a matriz A with integer entries and full rank n (see also LinearAlgebral[Rank] ). Check the
identity 1!

R™ = image(A) @ kernel(AT)
where the two subspaces are orthogonal to each other, image(A) L kernel(AT).

Here, image(A) is the subspace of R™ spanned by the columns of A (see LinearAlgebra[ColumnSpace]),
and kernel(AT) is the kernel of AT (see LinearAlgebra[NullSpace]).

b) Repeat a) for a matriz with rank < n.

Exercise 7.8: Your favorite package?
Look at the help page 7 index, and select packages. Here you see a complete list of available packages.
Choose one of them, have a closer look, and prepare a small demo of its basic features.

There are many different packages. If you have no other special preference, you may take a closer look at
the package geometry. Aficionados of combinatorics may look at combinat (see also combstruct). And
there are many, many others.

1 The proof of this identity is easy. But here we just ‘verify’ it by experiment.



