Übungsaufgaben zur VU Computermathematik Serie 7

Here we mainly concentrate on the use of the data structures Vector and Matrix.

Exercise 7.1: Matrix representation of a linear system.

Assume that a list is given containing m linear equations with integer coefficients in the n indexed variables $\mathrm{x}[\mathrm{k}], k=1 \ldots n$.
Example ($m=2, n=3$):

$$
[2 * x[1]+x[2]-3, x[1]-x[3]+4]
$$

represents the system of linear equations

$$
\begin{aligned}
2 x_{1}+x_{2} & =3 \\
x_{1}-x_{3} & =-4
\end{aligned}
$$

i.e., $A x=b$, with

$$
A=\left(\begin{array}{rrr}
2 & 1 & 0 \\
1 & 0 & -1
\end{array}\right), \quad b=\binom{3}{-4}
$$

a) Design a procedure which expects such a list as its argument and which returns the sequence A, b in form of a Matrix and a Vector.

Hint: Use ? coeff to extract the coefficients of the $\mathrm{x}[k]$.
b) Design a procedure for the inverse operation.

Remark: For a) it would be somewhat tricky to detect in an automatic way what the value of n (the number of variables) is. Therefore you may specify n as an additional argument to your procedure.

Exercise 7.2: Matrix representation of a quadratic form.

Assume that a quadratic form $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$, i.e., a homogenous polynomial of degree 2 in the n indexed variables $\mathrm{x}[k], k=1 \ldots n$, is given (with integer coefficients).
Example ($n=3$):

$$
5 * x[1] \sim 2+4 * x[1] * x[2]-x[2] * x[3]-4 * x[3] \wedge 2
$$

a) Design a procedure which expects such an expression as its argument and which returns the unique symmetric integer $n \times n$-matrix Q such that ${ }^{9} q(x)=\frac{1}{2} x^{T} \cdot Q \cdot x$.
${ }^{9}$ Here, $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ is a column vector, and x^{T} is the corresponding row vector.

Example $(n=3)$:

$$
5 x_{1}^{2}+4 x_{1} x_{2}-x_{2} x_{3}-4 x_{3}^{2}=\frac{1}{2} x^{T} \cdot Q \cdot x, \quad \text { with } \quad Q=\left(\begin{array}{rrr}
10 & 4 & 0 \\
4 & 0 & -1 \\
0 & -1 & -8
\end{array}\right)
$$

Hint: Use coeff $(\ldots, 2)$ and $\operatorname{coeff}(\ldots, \operatorname{coeff}(\ldots))$. Again, use n as an additional argument to your procedure.

For testing examples, choose n, declare $\mathrm{X}:=\operatorname{Vector}(n$, symbol $=\mathrm{x}$), and use LinearAlgebra[Transpose] to convert X to a row vector.
b) Design a procedure for the inverse operation.

Exercise 7.3: Working with matrix functions.

A polynomial expression $p(t)=c_{0}+c_{1} t+c_{2} t^{2}+\ldots$ can be applied to a quadratic matrix A, yielding $p(A)=c_{0} I+c_{1} A+c_{2} A^{2}+\ldots$ (try it). In applications (like iterative methods in linear algebra), however, application of $p(A)$ to a vector x is usually required, $y:=p(A) x$, resulting in another vector y. This can be realized in a more efficient way.
a) Design a procedure which expects a quadratic matrix, a polynomial function, and a vector as its arguments and which returns the vector

$$
p(A) x=c_{0} x+c_{1} A x+c_{2} A^{2} x+\ldots
$$

For this purpose, use an efficient Horner-like evaluation scheme:

$$
p(A) x=c_{0} x+A\left(c_{1} x+A(\ldots)\right)
$$

Note that this involves only matrix-vector multiplications.
Hint: Organize the evaluation using a do loop.
Use coeff. ? degree(...) returns the degree of a polynomial expression.
b) Extend your procedure by a parameter check: A must be quadratic, and the dimensions of A and x must be compatible. Include two error exits with appropriate error messages.
c) Let $r(x)=p(x) / q(x)$ be a rational function.

What is $r(A)$? Design a procedure which computes $r(A) x$.
Hint: This is only well-defined if $q(A)$ is invertible. Generate the matrix $q(A)$ by a Horner-like scheme, evaluate $p(A) x$ and use LinearAlgebra[LinearSolve] (M, b), which computes the solution y of a linear system $M y=b$.

Exercise 7.4: A special class of matrices.

a) A quadratic matrix A is called a Toeplitz matrix if the values $a_{j k}$ of its entries only depend on $j-k$. This means that the entries take constant values along each diagonal.

Example:

$$
A=\left(\begin{array}{llll}
1 & 0 & 2 & 4 \\
3 & 1 & 0 & 2 \\
4 & 3 & 1 & 0 \\
0 & 4 & 3 & 1
\end{array}\right)
$$

Design a procedure istoeplitz which expects a quadratic matrix as its arguments and which returns true if it is Toeplitz and false otherwise.
b) Topelitz matrices are examples of 'data-sparse' matrices: A Toeplitz matrix is uniquely defined by its first row r and its first column c (this is still slightly redundant since $r_{1}=c_{1}$.)

Assume that two vectors r and c of the same length (with $r_{1}=c_{1}$) represent a Toeplitz matrix A. Design a procedure which expects r, c, and another vector x as its arguments and which computes the matrix-vector product $A x$ in a memory-efficient way, namely without explicitly building the matrix A.

Exercise 7.5: Multivariate Taylor expansion.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth scalar function in n variables. The Taylor polynomial of degree 2 of such a function about a point $\xi \in \mathbb{R}^{n}$ looks as follows:

$$
p_{2}(x ; \xi)=f(\xi)+\underbrace{\nabla f(\xi) \cdot(x-\xi)}_{\text {linear form }}+\underbrace{\frac{1}{2}(x-\xi)^{T} \cdot\left(\nabla^{T} \nabla\right) f(\xi) \cdot(x-\xi)}_{\text {quadratic form }}
$$

Here, x and ξ are to be interpreted as column vectors. ∇f is the gradient of f, i.e., the row vector consisting of the first partial derivatives of f,

$$
\nabla f(\xi)=\left(\frac{\partial f}{\partial x_{1}}(\xi), \ldots \frac{\partial f}{\partial x_{n}}(\xi)\right)
$$

$\left(\nabla^{T} \nabla\right) f$ is the so-called Hessian matrix of f; it is symmetric and contains all second partial derivatives ${ }^{10}$ of f,

$$
\left(\nabla^{T} \nabla\right) f(\xi)=\left(\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}(\xi) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(\xi) \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\xi) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(\xi)
\end{array}\right)
$$

a) Design a procedure ntay2 which expects a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a vector $\xi \in \mathbb{R}^{n}$ as its arguments and which returns the expression $p_{2}(x ; \xi)$ in the indexed variables $\mathrm{x}[1], \ldots, \mathrm{x}[\mathrm{n}]$ representing x.
Remark: It will be fine if you realize this for the case $n=3$ only. Here it is convenient to replace the variables $\mathrm{x}[1], \mathrm{x}[2], \mathrm{x}[3]$ by $\mathrm{x}, \mathrm{y}, \mathrm{z}$. Choose an example and compare with ? mtaylor.
b) Choose a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and a point $\xi \in \mathbb{R}^{2}$ (e.g., $\xi=(0,0)$), and use ? plot3d and display to plot the graphs of the functions f and p_{2} in a single 3D plot. Choose a plot range around the point ξ which is not too large (p_{2} is a local approximation to f). Furthermore, verify that all partial derivatives of p_{2} up to degree 2 at $x=\xi$ coincide with the corresponding derivatives of f. (This is true by construction, according to the general principle underlying Taylor approximation.)

Exercise 7.6: Visualization of linear mappings via parametric plots.

An $n \times n$-matrix A represents a linear mapping $x \mapsto A x$ from \mathbb{R}^{n} to \mathbb{R}^{n}. We visualize the behavior of such a mapping for $n=2$ and $n=3$.
a) Design a procedure expecting a numerical $2 \times 2-\operatorname{matrix} A$ and a positive integer M as its arguments. Use polar coordinates to generate M equally spaced points (vectors) x_{j} on the unit circle in \mathbb{R}^{2}. Apply A to all these vectors, $y_{j}:=A x_{j}$ for $j=1 \ldots M$. Use plots[pointplot] with option style=line and scaling=constrained to plot the resulting curve. Produce a nice plot, and also include the images of the unit vectors $x=(0,1)$ and $x=(1,0)$.
Hint: Use display. How 'smooth' the resulting plot looks like will depend on A and M.

[^0]b) Realize a more 'elegant' version of such a procedure using a parametric version of ? plot.

Hint: First you have to understand how this works. Simplest example:

```
plot([sin(phi),cos(phi),phi=0..2*Pi],scaling=constrained)
```

generates a plot of the unit circle (this corresponds to the case $A=I$).
c) Generalize your procedure from b) to the case $n=3$, i.e., produce a $3 D$ plot of the image of the unit ball in \mathbb{R}^{3} under the mapping A.

Hint: Use ? plot3d. The syntax is for a parametric 3D plot is somewhat different from the 2D case. Simplest example:

```
plot3d([cos(phi)*sin(theta),sin(phi)*sin(theta),cos(theta)],
    phi=0..2*Pi,theta=0..Pi,scaling=constrained)
```

generates a 3D plot of the unit ball in \mathbb{R}^{3}.
d) $(*)$ Extend $\mathbf{c})$, adding the images of the unit vectors to the plot.

Exercise 7.7: Verification of a simple identity in linear algebra.

Let A be an $m \times n$-matrix (m rows, n columns). Here we assume that $m>n$.
a) Choose a matrix A with integer entries and full rank n (see also LinearAlgebra[Rank]). Check the identity ${ }^{11}$

$$
\mathbb{R}^{m}=\operatorname{image}(A) \oplus \operatorname{kernel}\left(A^{T}\right)
$$

where the two subspaces are orthogonal to each other, image $(A) \perp \operatorname{kernel}\left(A^{T}\right)$.
Here, image (A) is the subspace of \mathbb{R}^{m} spanned by the columns of A (see LinearAlgebra [ColumnSpace]), and $\operatorname{kernel}\left(A^{T}\right)$ is the kernel of A^{T} (see LinearAlgebra[NullSpace]).
b) Repeat a) for a matrix with rank $<n$.

Exercise 7.8: Your favorite package?

Look at the help page ? index, and select packages. Here you see a complete list of available packages.
Choose one of them, have a closer look, and prepare a small demo of its basic features.
There are many different packages. If you have no other special preference, you may take a closer look at the package geometry. Aficionados of combinatorics may look at combinat (see also combstruct). And there are many, many others.

[^1]
[^0]: ${ }^{10}$ More precisely: This matrix is symmetric if all second partial derivatives are continuous, because in this case, $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}=$ $\frac{\partial^{2} f}{\partial x_{k} \partial x_{j}}$ (Schwarz' Theorem).

[^1]: ${ }^{11}$ The proof of this identity is easy. But here we just 'verify' it by experiment.

