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We use the package LinearAlgebra and mainly the data types Vector and Matrix. The terminology
‘numerical’ refers to the fact that a computation with numerical (real) data is to be performed. ‘Integer’
means that integer data are assumed.

Note that most (not all) of the exercises use numerical floating point computations and could also be
realized, e.g., in Matlab in an analogous way.

Exercise 8.1: Simple linear systems. Use of try.

A plane in R3 is implicitly described by an equation of the form

a x+ b y + c z = d

for given values a, b, c, d. A pair of such equations describes the intersection of two planes, which is (in
general) a straight line.

In the following we assume that all coefficients a, b, c, d take integer values.

a) Design a procedure isline which takes an integer matrix A of the form

A =

 a1 b1 c1 d1

a2 b2 c2 d2


as its argument, where each row represents a plane in R3. Decide whether these planes

1. are identical,

2. are parallel but not identical, or

3. intersect along a straight line,

and return the value 1, 2 or 3. (Alternatively, in case 3. you may return a representation of the
intersection line, using LinearSolve).

b) Design a procedure intersection point which expect two integer matrices (as in a)) as its argu-
ments. Use a) to check whether these represent straight lines. If so, decide whether these lines have an
intersection point, and return the coordinates of this point. Otherwise (which is of course the generic
case) exit (e.g.) with an error message.

Hint: Use LinearSolve. If no solution is found, LinearSolve exits with an error message. You can
control this event by ‘catching’ it and produce your own error message (or whatever you want to do in
this case). To this end, use ? try :

try

X:=LinearSolve(...,...): # if it is O.K. then it is O.K.

catch:

# specify what has to be done if try has failed, e.g.

error("no intersection"):

end try:



Remark: In the special case where lines are identical, LinearSolve does not fail (check). In this case
you may return the answer, but of course it is does not represent a single intersection point. A more
special treatment of this case is possible but not compulsory. (Of course you may try it, e.g. using
is(...,numeric).)

Exercise 8.2: Rotation in 3D.

Let k ∈ R3 be a column vector of Euclidean length 1 and ϕ ∈ R represent an angle. Furthermore, let K
be the skew-symmetric 3×3 matrix satisfying K · x = k × x for all x (cross product). The action of the
following 3×3 - matrix R describes a rotation with angle ϕ around the rotation axis defined by k. We do
not study it theoretically but perform some experiments.

a) Design a procedure rm(k,phi) which expects 12 k and ϕ as its (numerical) arguments and which returns
the rotation matrix (‘Rodriguez matrix’) 13

R = I + sinϕK + (1− cosϕ) (k · kT − I)

without explicitly building the matrix K. Use a double loop to build R.

b) Check by experiment that RT is the inverse 14 of R, which in turn is the same as R with ϕ replaced
by −ϕ.

c) Design a procedure rx which expects k, ϕ and a vector x as its (numerical) arguments and which
returns the rotated vector R · x, without explicitly building the matrix R. Use one inner product and
one cross product.

Hint: Realize the matrix-vector-product (k · kT ) · x in a simplified way, avoiding matrix-vector multi-
plication. What is the geometrical interpretation of this operation?

Exercise 8.3: Numerical quadrature: Construction of an approximation formula for an
integral.

Assume that for a real function f : [0, 1] → R you know the n + 1 values f(0), f( 1
n
), f( 2

n
), . . . , f(1) (for

given n ∈ N). We want to find an approximation formula for∫ 1

0

f(x) dx

of the form

ω0f(0) + ω1f( 1
n
) + ω2f( 2

n
) + . . .+ ωnf(1)

A general principle behind such constructions, ubiquitous in numerical analysis, is to require that the
approximation is exact for arbitrary polynomials f(x) of degree ≤ n. Simplest examples:

n = 1: ω0 = 1
2
, ω1 = 1

2

n = 2: ω0 = 1
6
, ω1 = 4

6
, ω2 = 1

6

12 It will be convenient not to require that k has length 1 but to normalize k within the procedure.
13 Note that k · kT is a 3×3 - matrix of rank 1.
14 This means that R is orthogonal. (A rotation is an example of an orthogonal mapping.)



a) This construction principle is equivalent to the requirement that the approximation is exact for all
monomials f(x) = x0, x1, x2, . . . , xn. Design a procedure quad coeffs which expects n ∈ N0 as its
argument and which returns the coefficients ω0 . . . , ωn ∈ Q in form of a Vector. For some values of n,
check that your result is correct.

Hint: Use LinearSolve to compute the exact solution of a linear system with rational data which you
can generate automatically.

b) Assume you integrate over [0, h] instead of [0, 1], using n+1 function values f(0), f(h
n
), f(2h

n
), . . . , f(h).

Show how to obtain the appropriate values for the coefficients ωj, assuming you have solved a).

(This is not a programming example but a simple exercise in analysis.)

Exercise 8.4: Reconstructing a linear mapping from observations.

Assume that, for a linear mapping y = Ax from Rn to Rn represented by an (unknown) n×n - matrix A,
we know the images yj ∈ Rn of n different vectors xj ∈ Rn under the mapping. The question is how to
reconstruct the matrix A from this information.

a) Choose an example in form of two matrices containing the (numerical) vectors xj and yj as its columns
and use LinearSolve for solving an appropriate matrix equation. Under what condition on the xj or
yj is the solution unique?

b) Generalize the problem to the case of a linear mapping from Rn to Rm, for arbitrary m,n ∈ N. How
many observations are required? Solve a problem with m > n and another one with m < n.

Exercise 8.5: Interpolation.

The practical approximation of (real) functions y = f(x) by polynomials is often based on interpolation:
Assume that a set of values {(xj, yj), j = 0 . . . n} (n ∈ N, xj distinct) is given. Then the polynomial
of degree n satisfying p(xj) = yj, j = 0 . . . n, is called the corresponding interpolation polynomial. If
yj = f(xj) for some given function f , then p is an approximation to f .

a) Design a procedure interp(x,y) which expects the (numerical) data xj and yj as its arguments (in
some appropriate format) and which returns the interpolating polynomial p(x) in form of a Maple
function.

Hint: Make the ansatz p(x) = c0+c1x+. . .+cnx
n, and use LinearSolve to determine the coefficients ck.

(Alternatively, you may also use ? VandermondeMatrix.)

b) Choose an example (f = sin, cos, exp, or whatever), degree n = 10, and compute the interpolating
polynomial p for the data {(xj, yj = f(xj)), j = 0 . . . n}, where the xj are equidistant points in [0, 1]
(with x0 = 0 and xn = 1).

In order to graphically explore the approximation quality, i.e., the behavior of the error p−f and its its
derivatives p′ − f ′, p′′ − f ′′, . . . , plot p, f together in one graph over [0, 1] and do the same for p′, f ′,
p′′, f ′′.

Exercise 8.6: A simple block system.



Assume that a (numerically given) mn×mn - matrix M has the bidiagonal block structure

M =



A1 B1

A2 B2

A3 B3

. . . . . .

An−1 Bn−1
An


with subblocks Aj, Bj of dimension m×m. We assume that the diagonal blocks Aj are invertible.

a) Choose a representation of M where only the Aj and Bj are stored in some appropriate format but not
M as a full Matrix.

b) Choose an example, and also vector b ∈ Rmn, and solve the linear system of equations M x = b via a
do - loop and applying LinearSolve to an m×m - subsystem in each iteration step.

Exercise 8.7: The inverse of a block-bidiagonal matrix.

Compute the inverse of your matrix M from Exercise 8 b) using your algorithm and store it as an object
of type Matrix. What is its shape?

Remark: The result shows that solving M x = b via multiplication of M−1 by b would be rather stupid.

Exercise 8.8: A special linear solution procedure.

We consider n×n - matrices A of the form

A = QΛQT

where Q is orthogonal, i.e., QTQ = I, and where Λ is diagonal. Thus, A is uniquely specified if Q and Λ
are given. 15

a) Design a (numerical) procedure which expects Q, a vector λ representing the diagonal of Λ, and a vector
x ∈ Rn as its arguments and which returns the vector Ax, without computing the matrix A. Do not
use matrix-matrix multiplication.

Addendum: Choose one of the qj and compute Aqj−λj qj. What do you observe? Also prove that what
you observe is true for all j (this is very simple).

b) We now also assume λj 6= 0, j = 1 . . . n.

Design a (numerical) procedure which expects Q, a vector λ representing the diagonal of Λ, and a
vector b ∈ Rn as its arguments and which returns the solution x of the linear system Ax = b, without
computing the matrix A. Do not use matrix-matrix multiplication.

Note that, in general, the solution of a linear system Ax = b requires O(n3) operations. In the case
considered here, only O(n2) operations are required. When presenting your example, provide an expla-
nation of this fact.

Remark: Note that a matrix A of the form considered here is symmetric. In linear algebra it is shown that,
conversely, each symmetric matrix can be written in such a form. The λj are the eigenvalues of A and
the columns qj of Q are the corresponding eigenvectors, forming an orthonormal basis of Rn. However, in
the general case (where A is given but Q and Λ are not known a priori), first solving the eigenproblem,
i.e., computing Q and Λ, and then proceeding as in a) is not an efficient algorithm in general.

15 Such a situation sometimes occurs, e.g., in the context of the numerical solution of differential equations.


