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Übungsaufgaben zur VU Computermathematik

Serie 9

Eine Kollektion verschiedener Problemstellungen, teilweise mit stofflichen Ergänzungen.

Exercise 9.1: Towers of Hanoi.

We solve this famous puzzle described at

https://en.wikipedia.org/wiki/Tower of Hanoi

in Maple based on a recursive approach.

We represent the three rods by three Maple stacks A,B,C (see ? stack and lecture notes, Part III), and
use the symbols 1,2,3,... to represent the disks. After initializing stack A with n discs, we solve the
problem in the following way:

(i) Move the pile consisting of the upper n− 1 discs from A to B.

(ii) Move the single remaining disc from A to C.

(iii) Move the pile of n− 1 discs from B to C.

This results in a recursive solution algorithm, since in steps (i) and (iii), analogous smaller problems are
solved.

Realize such a version using a recursive procedure, and display the status of of the three stacks after each
step in a simple manner (without using graphics). Try n = 2, 3, 4, 5, . . ..

Exercise 9.2: Derivation of a 2D quadrature formula.

Consider the triangle T with vertices (0, 0), (1, 0), and (0, 1). For the numerical approximation of integrals
of the form

If =

∫
T

f(x, y) d(x, y) =

∫ 1

x=0

(∫ 1−x

y=0

f(x, y) dy
)
dx



(for real functions f : R2 → R) we wish to find a formula Q of the form

Qf = α1 f(0, 0) + α2 f(1, 0) + α3 f(0, 1) + β1 f(1
2
, 0) + β2 f(0, 1

2
) + β3 f(1

2
, 1
2
)

which is exact for polynomials p(x, y) of degree ≤ 2, i.e., Qp = Ip for any

p(x, y) = c0 + c1 x+ c2 y + c20 x
2 + c11 xy + c02 y

2

This is equivalent to the requirement that Qp = Ip for p(x, y) = 1, x y, x2 xy and y2.

Setup and solve a system of 6 linear equations and use LinearAlgebra[LinearSolve] to solve it, resulting
in the desired coefficients αj and βj. Check that your result is correct.

Exercise 9.3: Solving a system of polynomial equations.

Consider the system of four polynomial equations

2*x[1]+2*x[2]=1

2*x[3]+x[4]=1

6*x[1]^2*x[3]+3*x[1]^2*x[4]+12*x[1]*x[2]*x[3]+6*x[1]*x[2]*x[4]+12*x[2]^2*x[3]+3*x[2]^2*x[4]=1

12*x[1]*(x[3]^2)+12*x[1]*x[4]*x[3]+3*x[1]*(x[4]^2)+6*x[2]*(x[3]^2)+6*x[2]*x[4]*x[3]+3*x[2]*(x[4]^2)=1

in the four variables x1, x2, x3, x4.

a) Use solve to compute the exact solutions of this system, and evaluate them using evalf. How many
real solutions can you identify?

b) Check that all computed solutions are correct.

Exercise 9.4: Source code on external files. Fighting with formatted input.

a) Take one of your worksheets which requires no interactive input and export it to a Maple language file
(file type .mpl). Then execute it using maple (or cmaple) and redirect the output to a text file.

Remark: This is useful if longer jobs have to run in batch mode. Depending on your installation, the
command line version of Maple is called maple or cmaple. If this is not in your execution path, check
its location.

b) (∗) Assume that the integer coefficients of a matrix consisting of rows of a given length n stored on a
text file. Each line contains one row of the matrix. Design a procedure which expects the name of the
text file as its argument and which returns the matrix in form of an object of type Matrix.

Hint: Use (e.g.) ? readline followed by ? sscanf.

Exercise 9.5: Exploring the behavior of a sequence via experiment.

We consider sequences (xn) defined by

xn := f(xn−1), n = 1, 2, 3, . . . , with f(x) =
1

2

(
x− 1

x

)
starting from an initial x0. We observe:

• For x0 = 0 we immediately end up with x1 =∞.

• For x0 = ±1 we have x1 = 0 and x2 =∞.



• For all other x0 ∈ Q, the sequence (xn) is well-defined for all n. (Why? This is very simple to prove.
Note that for x0 ∈ Q, all xn are rational numbers.)

• For a complex x0 ∈ C, x0 6∈ R, the sequence (xn) is well-defined, with xn 6∈ R for all n.

• For x0 ∈ R, the (real) sequence (xn) cannot be convergent, since the only possible limits are i and −i.

a) Design a procedure which, for given n ∈ N, produces a plot of the points (n, xn) for given x0.

Hint: For pointplot, a recommended set of options is

style=point, axes=boxed, symbolsize=20, and symbol=solidcircle

b) Conjecture: For all x0 ∈ C with Imx0 > (<) 0, the iteration converges to ±i. We explore this experi-
mentally:

Design a procedure which expects x0 ∈ C, ε > 0 and nmax ∈ N as its arguments and which returns the
minimal value n ∈ N such that |xn− (±i)| ≤ ε. If no such n ≤ nmax is detected, use error to issue an
error message including the value of xnmax. Use evalf.

Play with your procedure, in particular with x0 very close to 0.

Exercise 9.6: Simulating the movement of a soap bubble.

Imagine that a moving disk (see ? plottools[disk]) represents a soap bubble floating around in the
plane.

a) Use the random number generator (? rand) and plots[display] with options

axes=none, scaling=constrained, and insequence=true

to generate an animation of a moving soap bubble.

b) [optional:] 3D version of a), using ? plottools[sphere].

Remark: Play with parameters to simulate ‘realistic’ dynamics.

Exercise 9.7: Extension of Exercise 9.6 a).

(∗) Proceed in a similar way as in Exercise 9.6 a), and design a procedure which generates two lists b1, b2

of plot structures representing two different soap bubbles (with different colors). Stop when these bubbles
(disks) are overlapping for the first time.

Then, use plots[display] within a loop to generate a list of plot structures b[k] comprising b1[k]

and b2[k] within a single plot, for each k=1,2,. . . . Finally, use plots[display] on b with option
insequence=true to animate the simultaneous movement of both bubbles. The animation stops when
overlap occurs.

Remark: Just for fun, you may include some special effect at the end of the animation.



Exercise 9.8: Simulating the movement of a pendulum.

We consider the movement of a pendulum, described by its angle of deflection ϕ = ϕ(t) as a function of
time t. The governing diffferential equation is

ϕ̈(t) = − sin(ϕ(t))

where ϕ̈ is the second derivative of ϕ w.r.t. t. Together with initial conditions for ϕ and ϕ̇, e.g.

ϕ(0) = 1, ϕ̇(0) = 1

the problem has a unique solution ϕ(t) for all t, but the solution cannot be represented in an exact, analytic
form. Therefore we investigate some numerical methods. First of all, we introduce the angular velocity
ψ(t) := ϕ̇(t) as a separate variable and consider the equivalent system ϕ̇(t)

ψ̇(t)

 =

 ψ(t)

− sin(ϕ(t))

 with initial conditions

 ϕ(0)

ψ(0)

 =

 1

1


a) We choose a timestep h and use the simplest numerical scheme in order to compute approximations

(ϕn, ψn) to the solution (ϕ(tn), ψ(tn)) at the times tn := nh, n = 0, 1, 2, . . .. To this end we replace
the derivative ϕ̇(tn) by the forward difference quotient, i.e.,

ϕ̇(tn) ≈ ϕn+1 − ϕn
h

and analogously for ψ. This leads to the recursion ϕn+1

ψn+1

 =

 ϕn

ψn

+ h

 ψn

− sin(ϕn)

 , n = 0, 1, 2, . . . , starting from

 ϕ0

ψ0

 =

 1

1


Implement this method by a simple loop, using evalf, to generate a list of vectors containing the
solution values (ϕn, ψn) at the times tn, n = 0, 1, 2, . . .. Choose the timestep h = 0.1 and produce a
pointplot of the (ϕn, ψn), n = 0, 1, 2, . . ., for n up to 200 (i.e., t = 20). The solution should behave
periodic. What do you observe?

b) For larger time intervals, the method from a) produces a qualitatively incorrect approximation. Here
is a simple remedy: We use the modified recursion ϕn+1

ψn+1

 =

 ϕn

ψn

+ h

 ψn

− sin(ϕn+1)


Repeat the experiment from a) using the modified recursion. What do you observe?

c) In addition, apply dsolve with option numeric (without further special settings),

and use plots[odeplot]:

sol:=dsolve([D(u)(t)=v(t),D(v)(t)=-sin(u(t)),u(0)=1,v(0)=1],[u(t),v(t)],numeric)

plots[odeplot](sol,[u(t),v(t)],t=0..200,axes=boxed,thickness=2)

What do you observe? Also extend the range from t = 20 to t = 300 and repeat a), b), and c).

Remark: dsolve/numeric delivers a procedure, and calls to this procedure can be use to evaluate the
numerical approximation at particular particular times t, or it can be passed to ? plots[odeplot].


