Übungen zur Vorlesung
 Computermathematik

Serie 10

Aufgabe 10.1. Write a $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$-file which consists of this exercise sheet- headline of the sheet up to and including Aufgabe 10.2. To generate a $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$-command \command, you can use \verb|\command|.

Aufgabe 10.2. Write a text of your choice with headline and at least 400 words in $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$. Divide your text in at least two sections and add a table of contents. Use 12 pt as font size. What does the warning Overfull hbox mean? If necessary, modify the text such that $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ does not return this warning. Take a look at the generated log-file text. log and prepare to be able to explain the content of the file during your exercise. How would one have to modify the text in order to avoid the warning Overfull hbox? (Use the command \- resp. \linebreak. What is the difference between \linebreak and \newline?) Add the reference from where you took your text in a footnote \footnote\{...\}.

Aufgabe 10.3. Write the following definition of a Vandermonde matrix:

$$
V:=\left(\begin{array}{ccccc}
1 & x_{1} & x_{2}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
1 & x_{3} & x_{3}^{2} & \cdots & x_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

in $\mathrm{AF}_{\mathrm{E}} \mathrm{X}$. The dots are generated by \cdots, \vdots and \ddots, the symbol \times by \backslash times.
Aufgabe 10.4. Write a myenumerate-environment with associated counter, which generates for a code

```
\begin{myenumerate}
    \myitem A
    \myitem B
    \myitem C
\end{myenumerate}
```

the following result
(i) A
(ii) B
(iii) C
where the numbering of the roman numbers is automatic. Build on the itemize-environment. Write therefore a macro \myitem, which uses the command - . Check via the WWW how you could solve this exercise as well with the help of the enumerate-package.

Aufgabe 10.5. Use \newtheorem, to generate a new theorem-environment. Write as well proof-environment. The proof should start (as part of the environment) with bold-italic Proof. The end of the proof (as part of the environment) should be indicated with a right-aligned \backslash blacksquare $\boldsymbol{\square}$, i.e., there is a right-aligned at the end of the proof. Formulate and prove the following theorem in ${ }^{\mathrm{EA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$.
Hint. Surely, you have seen the implication (ii) \Rightarrow (i) in your Analysis-1-lecture. For the converse implication (i) \Rightarrow (ii), recall that uniformly continuous functions map Cauchy-sequences onto Cauchysequences.
Theorem 1. For $a, b \in \mathbb{R}$ and a continuous function $f:(a, b) \rightarrow \mathbb{R}$, the following two assertions are equivalent:
(i) f is uniformly continuous.
(ii) f has a continuous extension onto the compact interval $[a, b]$, i.e., there exists a function $\widehat{f}:[a, b] \rightarrow$ \mathbb{R} with $\widehat{f}(x)=f(x)$ for all $x \in(a, b)$.

In this case the continuous extension \widehat{f} is even unique.
Aufgabe 10.6. Formulate the following result as theorem with proof in $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ and extend the document of Aufgabe 10.5. All appearing references should be realised via \label and \ref etc. Write a suitable macro for sequences. A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of real numbers converges to some limit point $x \in \mathbb{R}$, if each subsequence $\left(x_{n_{j}}\right)_{j \in \mathbb{N}}$ contains a convergent subsequence $\left(x_{n_{j_{k}}}\right)_{k \in \mathbb{N}}$ which converges to x.

Aufgabe 10.7. Formulate the following result as theorem with proof in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ and extend the document of Aufgabe 10.5. All appearing references should be realised via \label and \ref etc.
Let $n \in \mathbb{N}$. It holds:

$$
\sqrt{n} \in \begin{cases}\mathbb{N}, & \text { if } n \text { is a square number }, \\ \mathbb{R} \backslash \mathbb{Q}, & \text { otherwise }\end{cases}
$$

Write a ${ }^{A} T_{\mathrm{E}} \mathrm{X}$-file which includes the assertion (formulated as theorem) and the (detailed) proof of this assertion. Use the environments from Aufgabe 10.5
Hint. You may use the fact that each natural number x has a unique prime factorisation, i.e., there exists a unique finite sequence of prime numbers $2 \leq p_{1} \leq \cdots \leq p_{k}$ with $x=\prod_{j=1}^{k} p_{j}$.

Aufgabe 10.8. Formulate the following result as theorem with proof in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ and extend the document of Aufgabe 10.5. All appearing references should be realised via \label and \ref etc. Write a suitable macro for norms and $\operatorname{dist}(\cdot, \cdot)$. Let $n \in \mathbb{N}$ and $A, B \subset \mathbb{R}^{n}$ open subsets with compact closure \bar{A}, \bar{B} and $A \cap B=\emptyset$. We define the boundary of the sets as $\partial A:=\bar{A} \backslash A$ and $\partial B:=\bar{B} \backslash B$ (the symbol ∂ is generated by \backslash partial). Then, there holds for the distances of the two sets that $\operatorname{dist}(A, B)=\operatorname{dist}(\partial A, \partial B)$, where we define for arbitrary sets $C, D \subset \mathbb{R}^{n}$

$$
\begin{equation*}
\operatorname{dist}(C, D):=\inf \left\{\|x-y\|_{2}: x \in C, y \in D\right\} \tag{1}
\end{equation*}
$$

Hint. Show that $\operatorname{dist}(A, B)=\operatorname{dist}(\bar{A}, \bar{B})$. Next, note that the infimum in (1) is a minimum for compact sets C, D.

