Dirk Praetorius Sommersemester 2018
Winfried Auzinger 21.03.2018

Ubungen zur Vorlesung
Computermathematik

Serie 2

Aufgabe 2.1. Write a function tensor which returns for n € N the chessboard-tensor B € N™*xnxn
with

0 if j+k+4/even
Bjre = o
1 ifj+k+¢odd

The function has to be implemented in two different ways: First, avoid loops and use appropriate vector
functions and arithmetic instead; second, use loops and scalar arithmetic. Hint: Analogously to matri-
ces, a three dimensional array with 0 entries can be obtained by A = zeros(n,n,n). Further, the call
A(i,j,k) gives the entry A;ji.

Aufgabe 2.2. Write a MATLAB-function ishermitian which tests if a given matrix A € C"*" is
hermitian, i.e., A= Af := A" resp. a;; = aj; for all 0 < 4,5 < n. Avoid loops, und use only appropriate
vector/matrix functions and indexing instead.

Aufgabe 2.3. Let p(z) = Z?:o ajxj be a polynomial with coefficient vector a € C"*!. Write a
MATLAB-function which takes a and returns the coefficient vector of the derivative p’.

The function has to be implemented in two different ways: First, avoid loops and use appropriate vector
functions and arithmetic instead; second, use loops and scalar arithmetic. Your function should work for
column and row vectors a and should always return a column vector; see, e.g., help reshape Think
about how you can test your code! What are suitable test-examples?

Aufgabe 2.4. Write a MATLAB-function which calculates for given polynomials p(x) and ¢(z) the
result 7(x) = p(z) + q(x) and returns the coefficient vector r € C**1. r(z) should be a polynomial of
minimal degree, i.e., for the leading coefficient there holds 7,11 # 0. The function has to be implemented
in two different ways: First, avoid loops and use appropriate vector functions and arithmetic instead;
second, use loops and scalar arithmetic. Think about how you can test your code! What are suitable
test-examples?

Aufgabe 2.5. Let p(z) =37, ajz’ be a polynomial with coefficient vector a € C"*1. Let x = (zj3) €
CM*N be a matrix of evaluation points. Write a MATLAB-function which calculates and returns the
evaluation matrix (p(xjk)) € CM*N_ Your function should work for column and row vectors a. The
function has to be implemented in two different ways: First, avoid loops and use appropriate vector
functions and arithmetic instead; second, use loops and scalar arithmetic. Think about how you can test
your code! What are suitable test-examples?

Hint: You can use reshape to reduce the case of a matrix = to the case of a vector. Note that the
evaluation points can be complex-valued.

Aufgabe 2.6. MATLAB offers a variety of ways to measure the run-time of a function resp. calculation.
One easy way is the function tic-toc. In this case, tic starts the timing and t=toc saves the passed
time in t; see help tic resp. help toc. Write a MATLAB-function which measures the run-time of at
least 2 of the previous exercises. For each exercise, use different input-sizes to compare the run-time of
the two different implementations (loops vs. vector arithmetic). Use fprinft to display your results.

Aufgabe 2.7. The integral f: f dz of a continuous function f : [a,b] — R can be approximated by so
called quadrature formulas

b n
JREE STEN)
a =1



where one fixes some vector = € [a,b]™ with 2; < --- < x,, and approximates the function f by some
polynomial p(z) = E?Zl ajzi~! of degree < n — 1 with p(x;) = f(x;) for all j = 1,...,n. The weights
wj can be calculated by the assumption

b n
/ qgdr = ijq(xj) for all polynomials ¢ of degree < n — 1.
a ]=]~

This is equivalent to the solution of the linear system

pk+1 k+1 b n
_ 4 :/ xkdx:ijx? fir alle k=0,...,n — 1.

k+1 k+1 ,

j=1
Why is this the case? Write a function integrate which takes the (column or row) vector z € [a,b]"
and the function value vector f(x), and which returns the approximated value of the integral. Therefore,
build the linear system as efficiently as possible and solve it with the backslash-operator. With the aid
of the resulting vector w € R™ one obtains the approximated integral as scalar product with the vector
f(x). Think about how you can test your code! What are suitable test-examples? Avoid loops and use
appropriate vector functions and arithmetic instead.

Aufgabe 2.8. Let L € R"*" a lower triangle matrix with entries £;; # 0 for all j =1,...,n, i.e., L has
the form

(1 0 . . 0
fo1 12 0 e 0
I = . .
lo1g lh—i2 - Lpim— O
enl €n2 T ‘en,nfl Enn

Because of det(L) = H;:l L;; # 0), L is invertible if and the inverse can be calculated recursively as
follows: We write L in the block form
L =
<L21 L22>

with L1; € RP*P| Ly € R?7*P and Loy € R?*?, where p + ¢ = n. Usually one chooses p = n/2 for even n
and p = (n—1)/2 for odd n. Note that L1 und Loo are again regular lower triangle matrices. Elementary
calculations show that the inverse has the block form

L—l _ ( Ll_ll 0 )
~Lyy LnLyi Ly )
Write a function invertL, which L' recursively calculates the inverse as described. You can test your

function with the aid of the function inv. Avoid loops and use appropriate vector functions and arithmetic
instead.



