
Dirk Praetorius Sommersemester 2018
Winfried Auzinger 21.03.2018

Übungen zur Vorlesung
Computermathematik

Serie 2

Aufgabe 2.1. Write a function tensor which returns for n ∈ N the chessboard-tensor B ∈ Nn×n×n

with

Bjk` =

{
0 if j + k + ` even

1 if j + k + ` odd

The function has to be implemented in two different ways: First, avoid loops and use appropriate vector
functions and arithmetic instead; second, use loops and scalar arithmetic. Hint: Analogously to matri-
ces, a three dimensional array with 0 entries can be obtained by A = zeros(n,n,n). Further, the call
A(i,j,k) gives the entry Aijk.

Aufgabe 2.2. Write a MATLAB-function ishermitian which tests if a given matrix A ∈ Cn×n is

hermitian, i.e., A = AH := A
T

resp. aij = aji for all 0 ≤ i, j ≤ n. Avoid loops, und use only appropriate
vector/matrix functions and indexing instead.

Aufgabe 2.3. Let p(x) =
∑n

j=0 ajx
j be a polynomial with coefficient vector a ∈ Cn+1. Write a

MATLAB-function which takes a and returns the coefficient vector of the derivative p′.
The function has to be implemented in two different ways: First, avoid loops and use appropriate vector
functions and arithmetic instead; second, use loops and scalar arithmetic. Your function should work for
column and row vectors a and should always return a column vector; see, e.g., help reshape Think
about how you can test your code! What are suitable test-examples?

Aufgabe 2.4. Write a MATLAB-function which calculates for given polynomials p(x) and q(x) the
result r(x) = p(x) + q(x) and returns the coefficient vector r ∈ Cn+1. r(x) should be a polynomial of
minimal degree, i.e., for the leading coefficient there holds rn+1 6= 0. The function has to be implemented
in two different ways: First, avoid loops and use appropriate vector functions and arithmetic instead;
second, use loops and scalar arithmetic. Think about how you can test your code! What are suitable
test-examples?

Aufgabe 2.5. Let p(x) =
∑n

j=0 ajx
j be a polynomial with coefficient vector a ∈ Cn+1. Let x = (xjk) ∈

CM×N be a matrix of evaluation points. Write a MATLAB-function which calculates and returns the
evaluation matrix

(
p(xjk)

)
∈ CM×N . Your function should work for column and row vectors a. The

function has to be implemented in two different ways: First, avoid loops and use appropriate vector
functions and arithmetic instead; second, use loops and scalar arithmetic. Think about how you can test
your code! What are suitable test-examples?
Hint: You can use reshape to reduce the case of a matrix x to the case of a vector. Note that the
evaluation points can be complex-valued.

Aufgabe 2.6. MATLAB offers a variety of ways to measure the run-time of a function resp. calculation.
One easy way is the function tic-toc. In this case, tic starts the timing and t=toc saves the passed
time in t; see help tic resp. help toc. Write a MATLAB-function which measures the run-time of at
least 2 of the previous exercises. For each exercise, use different input-sizes to compare the run-time of
the two different implementations (loops vs. vector arithmetic). Use fprinft to display your results.

Aufgabe 2.7. The integral
∫ b

a
f dx of a continuous function f : [a, b] → R can be approximated by so

called quadrature formulas ∫ b

a

f dx ≈
n∑

j=1

ωjf(xj),



where one fixes some vector x ∈ [a, b]n with x1 < · · · < xn and approximates the function f by some
polynomial p(x) =

∑n
j=1 ajx

j−1 of degree ≤ n − 1 with p(xj) = f(xj) for all j = 1, . . . , n. The weights
ωj can be calculated by the assumption∫ b

a

q dx =

n∑
j=1

ωjq(xj) for all polynomials q of degree ≤ n− 1.

This is equivalent to the solution of the linear system

bk+1

k + 1
− ak+1

k + 1
=

∫ b

a

xk dx =

n∑
j=1

ωjx
k
j für alle k = 0, . . . , n− 1.

Why is this the case? Write a function integrate which takes the (column or row) vector x ∈ [a, b]n

and the function value vector f(x), and which returns the approximated value of the integral. Therefore,
build the linear system as efficiently as possible and solve it with the backslash-operator. With the aid
of the resulting vector ω ∈ Rn one obtains the approximated integral as scalar product with the vector
f(x). Think about how you can test your code! What are suitable test-examples? Avoid loops and use
appropriate vector functions and arithmetic instead.

Aufgabe 2.8. Let L ∈ Rn×n a lower triangle matrix with entries `jj 6= 0 for all j = 1, . . . , n, i.e., L has
the form

L =


`11 0 · · · · · · 0
`21 `22 0 · · · 0
...

...
. . .

. . .
...

`n−1,1 `n−1,2 · · · `n−1,n−1 0
`n1 `n2 · · · `n,n−1 `nn


Because of det(L) =

∏n
j=1 `jj 6= 0), L is invertible if and the inverse can be calculated recursively as

follows: We write L in the block form

L =

(
L11 0
L21 L22

)
with L11 ∈ Rp×p, L21 ∈ Rq×p and L22 ∈ Rq×q, where p + q = n. Usually one chooses p = n/2 for even n
and p = (n−1)/2 for odd n. Note that L11 und L22 are again regular lower triangle matrices. Elementary
calculations show that the inverse has the block form

L−1 =

(
L−111 0

−L−122 L21L
−1
11 L−122

)
.

Write a function invertL, which L−1 recursively calculates the inverse as described. You can test your
function with the aid of the function inv. Avoid loops and use appropriate vector functions and arithmetic
instead.


