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Serie 3

Aufgabe 3.1. A matrix A € R"*" is strictly diagonally dominant if

n
Z |Aji| < |Ajj;| firalle j e {1,...,n}.
i
Further, if a matrix is symmetric, strictly diagonally dominant and there holds A;; > 0 for all j €
{1,...,n}, then A is positive definite. Write a function constructSPDmatrix which returns for a give
dimension n a random symmetric and positive definite (SPD) matrix A € R"*". Hint: Use rand().
Note that A * AT is symmetric for all A € R"*™. Use this to construct SPD-matrices.

Aufgabe 3.2. Let b € R” and A € R"*" be a symmetric and positive definite (SPD) matrix. In order to
solve the linear system Az = b, one can use the CG-method. Write a MATLAB function cgsolve, which
gets A, b as well as a tolerance 7 > 0 and returns the solution x of the linear system. The algorithm is
obtained as follows: For an arbitrary initial guess (%) € R” compute 7(°) := b — Az and d(© := (),
For all k € N, we define the sequences
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If the accurancy |r(’“+1)\ < 7 is achieved, the CG-iteration should stop and return the current approxi-

mation z*t1) ~ z. Test your code with suitable examples. How does the number of CG-steps behaive
for 7 — 0 and big dimensions n € N. Hinweis: Use exercise [3.1

Aufgabe 3.3. Aitken’s A2-method is a method for convergence acceleration of sequences. For an injec-
tive sequence (x,) with = lim,_,+ x, one defines
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Under certain assumptions for the sequence (x,) it then holds
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i.e., the sequence (y,,) converges faster to = than (z,,). Write a MATLAB function aitken which takes a
vector x € RY and returns a vector y € RV~2. Use suitable loops. Further, write an alternative MATLAB
function aitken_vec which calculates the vector y € RV~=2 with suitable vector arithmetic instead of
loops. Think about how you can test your code! What happens for a geometric sequence x,, := ¢" with
0<g<1?

Aufgabe 3.4. Write a MATLAB function diffaitken, which computes the approximation of the deri-
vative of a function f in a point x through the foward and central difference quotient
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Given the function f, the point z and an initial parameter hy > 0, the function returns an approximation
of the derivative obtained as follows: For n > 1, compute h,, := 2~ ""Dh, z,, = ®(hy,). Further, compute
the sequence of the Aitken-extrapolation which is given by ¢, := x, fir n = 1,2, and ¢,, := y,_» for
n > 3. In this case y, denote the sequence from exercise @

Additionally, compute the experimental rate of convergence for the foward and central difference quotient
with and withoud Aitken-extrapolation. Visualize your results. What rates do you get?

Aufgabe 3.5. Consider the real nodes z; < --- < x,, and function values y; € R. Then, linear algebra
provides a unique polynomial p(t) = 37, a;t/~" of degree n—1, such that p(z;) = y; forallj = 1,...,n.
Suppose a fixed evaluation point ¢ € R. The Newille-algorithm is able to compute the point evaluation
p(t) without computing the vector of coefficients a € R™. It consists of the following steps: First, define
for j,m € N with m > 2 and j +m < n+ 1 the values
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This implies p(t) = p1,,. Write a MATLAB-function neville which computes p(t) for a given evaluation
point ¢ € R and vectors z,y € R™. To do that, you can use the following scheme
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One easy way to implement this scheme is by building a matrix with entries (pjﬂn)?,m:l' For testing,
take an arbitrary polynomial resp. nodes, and compute y; = p(z;).

Aufgabe 3.6. One can implement the Neville-algorithm from exercise wihout using additional me-
mory. Therfore, instead of storing the values (p;jm)7,,—; in a matrix, you can overwrite suitable entries
in the given vector y. Write a MATLAB-function neville2 which realizes the Neville-algorithm wihtout
using additional memory.

Aufgabe 3.7. One efficient way to compute the foward difference quotient ®(h) from exercise is the
Richardson-extrapolation of the foward difference quotient. The (theoretical!) idea is the following: Use
the values ®(hy),...,®(h,) to compute an interpolation polynimomial of degree n — 1 with (h;, ®(h;))
fir j = 1,...,n. Then, there holds p,(h) =~ ®(h) and one can use the Neville-algorithm to compute the
point evaluation at h = 0. (A proof of convergence for this scheme is given in the lecture Numerischen
Mathematik.) Write a function richardson which computes an approximation of f’(x) for a given
function-handle f, evaluation point z € R, step-size hg and tolerance 7 > 0. First, define h,, := 27 "hyg
and y, := p,(0). Then, the function should return the first y,1+1 =~ f’(x) which satisfies

T, falls |yns1] < 7,

|yn - ynJrll <
T |Ynt1] else.

Use the function neville from exercise [3.5]

Aufgabe 3.8. One possible algorithm for eigenvalue computations is the Power Iteration. It approxi-
mates (under certain assumptions) the eigenvalue A € R with the greatest absolute value of a symmetric
matrix A € R™ "™ as well as the corresponding eigenvector z € R™. The algorithm is obtained as follows:
Given a vector (9 € R"\{0}, e.g., (9 = (1,...,1) € R", define the sequences
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and A = 2®) . Az = ngk)(Ax(k))j for k € N,
j=1



where ||yll2 := (Z;‘Zl yjz»)l/ ? denotes the Euclidean norm. Then, under certain assumptions, (Ax) con-
verges towards A, and (z(®)) converges towards an eigenvector associated to A (in an appropriate sense).
Write a MATLAB function poweriteration, which, given a matrix A, a tolerance 7 and an initial vector
20 verifies whether the matrix A is symmetric. If this is not the case, then the function displays an

error message and terminates (use error). Otherwise, it computes (A\;) and (z(*)) until

i [A\] <
[Az® — Naz®y <7 and At — M| <47 if A <7,
7| Ak else,

and returns A, and z(®). Realize the function in an efficient way, i.e., avoid unnecessary computations
(especially of matrix-vector products) and storage of data. Then, compare poweriteration with the
built-in MATLAB function eig. Use the function norm, as well as MATLAB arithmetic.



