
Dirk Praetorius Sommersemester 2018
Winfried Auzinger 11.04.2018

Übungen zur Vorlesung
Computermathematik

Serie 3

Aufgabe 3.1. A matrix A ∈ Rn×n is strictly diagonally dominant if

n∑
k=1
k 6=j

|Ajk| < |Ajj | für alle j ∈ {1, . . . , n}.

Further, if a matrix is symmetric, strictly diagonally dominant and there holds Ajj > 0 for all j ∈
{1, . . . , n}, then A is positive definite. Write a function constructSPDmatrix which returns for a give
dimension n a random symmetric and positive definite (SPD) matrix A ∈ Rn×n. Hint: Use rand().
Note that A ∗AT is symmetric for all A ∈ Rn×n. Use this to construct SPD-matrices.

Aufgabe 3.2. Let b ∈ Rn and A ∈ Rn×n be a symmetric and positive definite (SPD) matrix. In order to
solve the linear system Ax = b, one can use the CG-method. Write a MATLAB function cgsolve, which
gets A, b as well as a tolerance τ > 0 and returns the solution x of the linear system. The algorithm is
obtained as follows: For an arbitrary initial guess x(0) ∈ Rn compute r(0) := b − Ax(0) and d(0) := r(0).
For all k ∈ N, we define the sequences

α(k) :=
r(k) · r(k)

d(k) ·Ad(k)
, x(k+1) := x(k) + α(k)d(k), r(k+1) := r(k) − α(k)Ad(k)

as well as

d(k+1) := r(k+1) +
r(k+1) · r(k+1)

r(k) · r(k)
d(k).

If the accurancy |r(k+1)| ≤ τ is achieved, the CG-iteration should stop and return the current approxi-
mation x(k+1) ≈ x. Test your code with suitable examples. How does the number of CG-steps behaive
for τ → 0 and big dimensions n ∈ N. Hinweis: Use exercise 3.1.

Aufgabe 3.3. Aitken’s ∆2-method is a method for convergence acceleration of sequences. For an injec-
tive sequence (xn) with x = limn→∞ xn one defines

yn := xn −
(xn+1 − xn)2

xn+2 − 2xn+1 + xn
(1)

Under certain assumptions for the sequence (xn) it then holds

lim
n→∞

x− yn
x− xn

= 0,

i.e., the sequence (yn) converges faster to x than (xn). Write a MATLAB function aitken which takes a
vector x ∈ RN and returns a vector y ∈ RN−2. Use suitable loops. Further, write an alternative MATLAB
function aitken vec which calculates the vector y ∈ RN−2 with suitable vector arithmetic instead of
loops. Think about how you can test your code! What happens for a geometric sequence xn := qn with
0 < q < 1?

Aufgabe 3.4. Write a MATLAB function diffaitken, which computes the approximation of the deri-
vative of a function f in a point x through the foward and central difference quotient

Φ(h) =
f(x+ h)− f(x)

h
resp. Φ(h) =

f(x+ h)− f(x− h)

2h
.

Given the function f , the point x and an initial parameter h0 > 0, the function returns an approximation
of the derivative obtained as follows: For n ≥ 1, compute hn := 2−(n−1)h0, xn := Φ(hn). Further, compute
the sequence of the Aitken-extrapolation which is given by φn := xn für n = 1, 2, and φn := yn−2 for
n ≥ 3. In this case yn denote the sequence from exercise 3.3.
Additionally, compute the experimental rate of convergence for the foward and central difference quotient
with and withoud Aitken-extrapolation. Visualize your results. What rates do you get?

Aufgabe 3.5. Consider the real nodes x1 < · · · < xn and function values yj ∈ R. Then, linear algebra
provides a unique polynomial p(t) =

∑n
j=1 ajt

j−1 of degree n−1, such that p(xj) = yj for all j = 1, . . . , n.
Suppose a fixed evaluation point t ∈ R. The Neville-algorithm is able to compute the point evaluation
p(t) without computing the vector of coefficients a ∈ Rn. It consists of the following steps: First, define
for j,m ∈ N with m ≥ 2 and j +m ≤ n+ 1 the values

pj,1 := yj ,

pj,m :=
(t− xj)pj+1,m−1 − (t− xj+m−1)pj,m−1

xj+m−1 − xj
.

This implies p(t) = p1,n. Write a MATLAB-function neville which computes p(t) for a given evaluation
point t ∈ R and vectors x, y ∈ Rn. To do that, you can use the following scheme

y1 = p1,1 −→ p1,2 −→ p1,3 −→ . . . −→ p1,n = p(t)
↗ ↗ ↗

y2 = p2,1 −→ p2,2
↗ ↗

y3 = p3,1 −→
...

...
...

... ↗
yn−1 = pn−1,1 −→ pn−1,2

↗
yn = pn,1

(2)

One easy way to implement this scheme is by building a matrix with entries (pj,m)nj,m=1. For testing,
take an arbitrary polynomial resp. nodes, and compute yj = p(xj).

Aufgabe 3.6. One can implement the Neville-algorithm from exercise 3.5 wihout using additional me-
mory. Therfore, instead of storing the values (pj,m)nj,m=1 in a matrix, you can overwrite suitable entries
in the given vector y. Write a MATLAB-function neville2 which realizes the Neville-algorithm wihtout
using additional memory.

Aufgabe 3.7. One efficient way to compute the foward difference quotient Φ(h) from exercise 3.4 is the
Richardson-extrapolation of the foward difference quotient. The (theoretical!) idea is the following: Use
the values Φ(h0), . . . ,Φ(hn) to compute an interpolation polynimomial of degree n− 1 with (hj ,Φ(hj))
für j = 1, . . . , n. Then, there holds pn(h) ≈ Φ(h) and one can use the Neville-algorithm to compute the
point evaluation at h = 0. (A proof of convergence for this scheme is given in the lecture Numerischen
Mathematik.) Write a function richardson which computes an approximation of f ′(x) for a given
function-handle f , evaluation point x ∈ R, step-size h0 and tolerance τ > 0. First, define hn := 2−nh0
and yn := pn(0). Then, the function should return the first yn+1 ≈ f ′(x) which satisfies

|yn − yn+1| ≤

{
τ, falls |yn+1| ≤ τ,
τ |yn+1| else.

Use the function neville from exercise 3.5.

Aufgabe 3.8. One possible algorithm for eigenvalue computations is the Power Iteration. It approxi-
mates (under certain assumptions) the eigenvalue λ ∈ R with the greatest absolute value of a symmetric
matrix A ∈ Rn×n as well as the corresponding eigenvector x ∈ Rn. The algorithm is obtained as follows:
Given a vector x(0) ∈ Rn\{0}, e.g., x(0) = (1, . . . , 1) ∈ Rn, define the sequences

x(k) :=
Ax(k−1)

‖Ax(k−1)‖2
and λk := x(k) ·Ax(k) :=

n∑
j=1

x
(k)
j (Ax(k))j for k ∈ N,

where ‖y‖2 :=
(∑n

j=1 y
2
j

)1/2
denotes the Euclidean norm. Then, under certain assumptions, (λk) con-

verges towards λ, and (x(k)) converges towards an eigenvector associated to λ (in an appropriate sense).
Write a MATLAB function poweriteration, which, given a matrix A, a tolerance τ and an initial vector
x(0), verifies whether the matrix A is symmetric. If this is not the case, then the function displays an
error message and terminates (use error). Otherwise, it computes (λk) and (x(k)) until

‖Ax(k) − λkx(k)‖2 ≤ τ and |λk−1 − λk| ≤

{
τ if |λk| ≤ τ,
τ |λk| else,

and returns λk and x(k). Realize the function in an efficient way, i.e., avoid unnecessary computations
(especially of matrix-vector products) and storage of data. Then, compare poweriteration with the
built-in MATLAB function eig. Use the function norm, as well as MATLAB arithmetic.

