Übungen zur Vorlesung
 Computermathematik

Serie 3

Aufgabe 3.1. A matrix $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant if

$$
\sum_{\substack{k=1 \\ k \neq j}}^{n}\left|A_{j k}\right|<\left|A_{j j}\right| \quad \text { für alle } j \in\{1, \ldots, n\} \text {. }
$$

Further, if a matrix is symmetric, strictly diagonally dominant and there holds $A_{j j}>0$ for all $j \in$ $\{1, \ldots, n\}$, then A is positive definite. Write a function constructSPDmatrix which returns for a give dimension n a random symmetric and positive definite (SPD) matrix $A \in \mathbb{R}^{n \times n}$. Hint: Use rand(). Note that $A * A^{T}$ is symmetric for all $A \in \mathbb{R}^{n \times n}$. Use this to construct SPD-matrices.

Aufgabe 3.2. Let $b \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$ be a symmetric and positive definite (SPD) matrix. In order to solve the linear system $A x=b$, one can use the CG-method. Write a MATLAB function cgsolve, which gets A, b as well as a tolerance $\tau>0$ and returns the solution x of the linear system. The algorithm is obtained as follows: For an arbitrary initial guess $x^{(0)} \in \mathbb{R}^{n}$ compute $r^{(0)}:=b-A x^{(0)}$ and $d^{(0)}:=r^{(0)}$. For all $k \in \mathbb{N}$, we define the sequences

$$
\alpha^{(k)}:=\frac{r^{(k)} \cdot r^{(k)}}{d^{(k)} \cdot A d^{(k)}}, \quad x^{(k+1)}:=x^{(k)}+\alpha^{(k)} d^{(k)}, \quad r^{(k+1)}:=r^{(k)}-\alpha^{(k)} A d^{(k)}
$$

as well as

$$
d^{(k+1)}:=r^{(k+1)}+\frac{r^{(k+1)} \cdot r^{(k+1)}}{r^{(k)} \cdot r^{(k)}} d^{(k)}
$$

If the accurancy $\left|r^{(k+1)}\right| \leq \tau$ is achieved, the CG-iteration should stop and return the current approximation $x^{(k+1)} \approx x$. Test your code with suitable examples. How does the number of CG-steps behaive for $\tau \rightarrow 0$ and big dimensions $n \in \mathbb{N}$. Hinweis: Use exercise 3.1.

Aufgabe 3.3. Aitken's Δ^{2}-method is a method for convergence acceleration of sequences. For an injective sequence $\left(x_{n}\right)$ with $x=\lim _{n \rightarrow \infty} x_{n}$ one defines

$$
\begin{equation*}
y_{n}:=x_{n}-\frac{\left(x_{n+1}-x_{n}\right)^{2}}{x_{n+2}-2 x_{n+1}+x_{n}} \tag{1}
\end{equation*}
$$

Under certain assumptions for the sequence $\left(x_{n}\right)$ it then holds

$$
\lim _{n \rightarrow \infty} \frac{x-y_{n}}{x-x_{n}}=0
$$

i.e., the sequence $\left(y_{n}\right)$ converges faster to x than $\left(x_{n}\right)$. Write a MATLAB function aitken which takes a vector $x \in \mathbb{R}^{N}$ and returns a vector $y \in \mathbb{R}^{N-2}$. Use suitable loops. Further, write an alternative MATLAB function aitken_vec which calculates the vector $y \in \mathbb{R}^{N-2}$ with suitable vector arithmetic instead of loops. Think about how you can test your code! What happens for a geometric sequence $x_{n}:=q^{n}$ with $0<q<1$?

Aufgabe 3.4. Write a MATLAB function diffaitken, which computes the approximation of the derivative of a function f in a point x through the foward and central difference quotient

$$
\Phi(h)=\frac{f(x+h)-f(x)}{h} \quad \text { resp. } \quad \Phi(h)=\frac{f(x+h)-f(x-h)}{2 h} .
$$

Given the function f, the point x and an initial parameter $h_{0}>0$, the function returns an approximation of the derivative obtained as follows: For $n \geq 1$, compute $h_{n}:=2^{-(n-1)} h_{0}, x_{n}:=\Phi\left(h_{n}\right)$. Further, compute the sequence of the Aitken-extrapolation which is given by $\phi_{n}:=x_{n}$ für $n=1,2$, and $\phi_{n}:=y_{n-2}$ for $n \geq 3$. In this case y_{n} denote the sequence from exercise 3.3 .
Additionally, compute the experimental rate of convergence for the foward and central difference quotient with and withoud Aitken-extrapolation. Visualize your results. What rates do you get?

Aufgabe 3.5. Consider the real nodes $x_{1}<\cdots<x_{n}$ and function values $y_{j} \in \mathbb{R}$. Then, linear algebra provides a unique polynomial $p(t)=\sum_{j=1}^{n} a_{j} t^{j-1}$ of degree $n-1$, such that $p\left(x_{j}\right)=y_{j}$ for all $j=1, \ldots, n$. Suppose a fixed evaluation point $t \in \mathbb{R}$. The Neville-algorithm is able to compute the point evaluation $p(t)$ without computing the vector of coefficients $a \in \mathbb{R}^{n}$. It consists of the following steps: First, define for $j, m \in \mathbb{N}$ with $m \geq 2$ and $j+m \leq n+1$ the values

$$
\begin{aligned}
p_{j, 1} & :=y_{j} \\
p_{j, m} & :=\frac{\left(t-x_{j}\right) p_{j+1, m-1}-\left(t-x_{j+m-1}\right) p_{j, m-1}}{x_{j+m-1}-x_{j}}
\end{aligned}
$$

This implies $p(t)=p_{1, n}$. Write a MATLAB-function neville which computes $p(t)$ for a given evaluation point $t \in \mathbb{R}$ and vectors $x, y \in \mathbb{R}^{n}$. To do that, you can use the following scheme

One easy way to implement this scheme is by building a matrix with entries $\left(p_{j, m}\right)_{j, m=1}^{n}$. For testing, take an arbitrary polynomial resp. nodes, and compute $y_{j}=p\left(x_{j}\right)$.
Aufgabe 3.6. One can implement the Neville-algorithm from exercise 3.5 wihout using additional memory. Therfore, instead of storing the values $\left(p_{j, m}\right)_{j, m=1}^{n}$ in a matrix, you can overwrite suitable entries in the given vector y. Write a MATLAB-function neville2 which realizes the Neville-algorithm wihtout using additional memory.
Aufgabe 3.7. One efficient way to compute the foward difference quotient $\Phi(h)$ from exercise 3.4 is the Richardson-extrapolation of the foward difference quotient. The (theoretical!) idea is the following: Use the values $\Phi\left(h_{0}\right), \ldots, \Phi\left(h_{n}\right)$ to compute an interpolation polynimomial of degree $n-1$ with $\left(h_{j}, \Phi\left(h_{j}\right)\right)$ für $j=1, \ldots, n$. Then, there holds $p_{n}(h) \approx \Phi(h)$ and one can use the Neville-algorithm to compute the point evaluation at $h=0$. (A proof of convergence for this scheme is given in the lecture Numerischen Mathematik.) Write a function richardson which computes an approximation of $f^{\prime}(x)$ for a given function-handle f, evaluation point $x \in \mathbb{R}$, step-size h_{0} and tolerance $\tau>0$. First, define $h_{n}:=2^{-n} h_{0}$ and $y_{n}:=p_{n}(0)$. Then, the function should return the first $y_{n+1} \approx f^{\prime}(x)$ which satisfies

$$
\left|y_{n}-y_{n+1}\right| \leq \begin{cases}\tau, & \text { falls }\left|y_{n+1}\right| \leq \tau \\ \tau\left|y_{n+1}\right| & \text { else }\end{cases}
$$

Use the function neville from exercise 3.5
Aufgabe 3.8. One possible algorithm for eigenvalue computations is the Power Iteration. It approximates (under certain assumptions) the eigenvalue $\lambda \in \mathbb{R}$ with the greatest absolute value of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ as well as the corresponding eigenvector $x \in \mathbb{R}^{n}$. The algorithm is obtained as follows: Given a vector $x^{(0)} \in \mathbb{R}^{n} \backslash\{0\}$, e.g., $x^{(0)}=(1, \ldots, 1) \in \mathbb{R}^{n}$, define the sequences

$$
x^{(k)}:=\frac{A x^{(k-1)}}{\left\|A x^{(k-1)}\right\|_{2}} \quad \text { and } \quad \lambda_{k}:=x^{(k)} \cdot A x^{(k)}:=\sum_{j=1}^{n} x_{j}^{(k)}\left(A x^{(k)}\right)_{j} \quad \text { for } k \in \mathbb{N},
$$

where $\|y\|_{2}:=\left(\sum_{j=1}^{n} y_{j}^{2}\right)^{1 / 2}$ denotes the Euclidean norm. Then, under certain assumptions, $\left(\lambda_{k}\right)$ converges towards λ, and $\left(x^{(k)}\right)$ converges towards an eigenvector associated to λ (in an appropriate sense). Write a MATLAB function poweriteration, which, given a matrix A, a tolerance τ and an initial vector $x^{(0)}$, verifies whether the matrix A is symmetric. If this is not the case, then the function displays an error message and terminates (use error). Otherwise, it computes $\left(\lambda_{k}\right)$ and ($x^{(k)}$) until

$$
\left\|A x^{(k)}-\lambda_{k} x^{(k)}\right\|_{2} \leq \tau \quad \text { and } \quad\left|\lambda_{k-1}-\lambda_{k}\right| \leq \begin{cases}\tau & \text { if }\left|\lambda_{k}\right| \leq \tau \\ \tau\left|\lambda_{k}\right| & \text { else }\end{cases}
$$

and returns λ_{k} and $x^{(k)}$. Realize the function in an efficient way, i.e., avoid unnecessary computations (especially of matrix-vector products) and storage of data. Then, compare poweriteration with the built-in MATLAB function eig. Use the function norm, as well as MATLAB arithmetic.

