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Übungen zur Vorlesung
Computermathematik

Serie 4

Aufgabe 4.1. Let I :=
∫ 5

0
exp(x) dx. Use the quadrature from exercise 2.7, to compute a sequence of

approximations IN :=
∑N
j=1 ωjf(xj). Here, N is the number of equidistant nodes 0 = x1 < x2 < . . . <

xN = 5. Further, visualize the error EN := |I − IN | as well as the error-estimator δN := |I2N − IN |
in a double-logarithmic plot. What is the convergence behavior of the sequences EN and δN? Use the
Aitken-∆2-algorithm, does the order of convergence increase?

Aufgabe 4.2. Implement the Quicksort algorithm, which sorts a vector x ∈ Rn. To do so Quicksort
chooses an arbitrary Pivot element from x, e.g., x1. Then, x is splitted into two parts, x(<) and x(≥),
and the Pivot element x1: x(<) contains all the elements ≤ x1, while x(≥) contains all the elements ≥ x1.
x(<) and x(≥) are sorted recursively. Afterwards, the result is put together. The implementation of this
algorithm in MATLAB (in contrast to C/C++), requires additional storage. Why?

Aufgabe 4.3. Write a MATLAB script, which measures and visualizes the runtime of quicksort from
exercise 4.2. First consider a sequence of random vectors x ∈ RN and N = 100 · 2n with n = 0, 1, 2, . . . .
Further construct a sequence of vectors which realize the worst-case complexity of your implementation.
Compare the two different commands tic-toc and cputime. Devise suitable plots to visualize the com-
putational cost of your implementation. What is your expectation for the computational complexity? Do
the experiments underpin your theoretical findings?

Aufgabe 4.4. Write a function plotPotential, which takes a function f : [a, b]2 → R, a interval [a, b]
and a step size τ > 0, and plots the projection of f(x, y) onto the 2D plane (i.e., view(2)). Add a
colorbar to the plot. For the visualization, use a tensor grid with step size τ . You may assume, that
the actual implementation of f takes matrices x, y ∈ RM×N and returns a matrix z ∈ RM×N of the
corresponding function values, i.e., zjk = f(xjk, yjk). Optionally, the function plotPotential takes a
parameter n ∈ N. For given n, add n (black or white) contour lines to the figure. To verify your code,
write a MATLAB script which visualizes the potential f(x, y) = x ·exp(−x2−y2) from the lecture notes.

Aufgabe 4.5. Suppose you are given a C function with signature

double f(double x, double y);

Write a MEX-MATLAB function fct which takes matrices X,Y ∈ RM×N and returns the matrix

Z = fct(X,Y)

with Z ∈ RM×N and Zjk = f(Xjk, Yjk). The MEX function should check whether the dimensions of
X and Y coincide, and should throw an error if they do not. To check your implementation, implement
the function f(x, y) = x cos(y) exp(−x2) + exp(−y2) sin(x2) in C and reproduce the plots of the lecture
slides 134-140.

Aufgabe 4.6. Let m,n,N ∈ N. Let I, J, a ∈ RN represent the coordinate format of a sparse matrix
A ∈ Rm×n, i.e., for all k = 1, . . . , N holds Aij = ak with i = Ik, j = Jk. Write a MATLAB function

[II,JJ,AA] = naive2ccs(I,J,a,m,n)

which returns the corresponding vectors of the CCS format.

Aufgabe 4.7. Given the vectors of the CCS format of a sparse matrix A ∈ Rm×n from the last exercise,
write a MATLAB function

Ax = mvm(II,JJ,AA,m,n,x)



which computes the matrix-vector multiplication b = Ax ∈ Rm for given x ∈ Rn. The complexity of
the code must be O(N). Hint: You can verify your code as follows: Suppose that A is a sparse matrix
(e.g., the triadiagonal matrix from page 126 of the lecture notes). Then, the coordinate format of A is
obtained by [I,J,a] = find(A) in MATLAB. Use your code from Aufgabe 4.6 to compute the vectors
of the CCS format and compare the outcome of your function mvm with the matrix-vector multiplication
A*x in MATLAB.

Aufgabe 4.8. The following code computes a sparse matrix A ∈ RN×N (You can download the code
from the COMPMATH webpage).

function A = matrix(N)

x = rand(1,N);

y = rand(1,N);

triangles = delaunay(x,y);

n = size(triangles,1);

A = sparse(N,N);

for i = 1:n

nodes = triangles(i,:);

c1 = [x(triangles(i,1)),y(triangles(i,1))] ;

d21 = [x(triangles(i,2)),y(triangles(i,2))] - c1;

d31 = [x(triangles(i,3)),y(triangles(i,3))] - c1;

area = 0.5*(d21(:,1).*d31(:,2)-d21(:,2).*d31(:,1));

B = [1/12,1/24,1/24;1/24,1/12,1/24;1/24,1/24,1/12] * area;

A(nodes,nodes) = A(nodes,nodes) + B;

end

Plot the computational time t(N) over N and visualize the growth t(N) = O(Nα) for N = 100 · 2k
and k = 0, 1, 2, . . . . Which growth do you see? What is the reason for it? What is the bottleneck of this
implementation? What can be done to improve the runtime behavior? Write an improved code which
leads to a better computational time. Visualize its runtime in the same plot to show that the improved
code is really superior. Which growth do you expect and see for your improved code? Hint: You might
want to have a look at help sparse.


