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Exercise 6.1: Limits and infinite series.

a) Compute the following limits (these are elementary examples) :

lim
n→∞

(√
n+
√
n −

√
n
)

lim
x→ 0

ex − 1− x− x2 − x3 − x4

x5
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ex − 1− x− x2

2
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6
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lim
n→∞

(
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i

n

)n
(i = imaginary unit) lim

x→ 0

ln(1 + ln(1 + x))

x
lim
x→ 1

lnx

sin(πx)

b) Compute the values of the following infinite series (not elementary). Also evaluate them using evalf :

∞∑
k= 1

1

k4

∞∑
k= 1

1

k8

∞∑
k= 1

(−1)k+1

k4

∞∑
k= 1

(−1)k+1

k8

c) Again playing with π a little bit:

Series of the form

∞∑
k= 1

1

kp
converge faster and faster with increasing p (towards values closer and closer to 1).

For instance, you may take the sums
n∑

k= 1

1

kp
, p = 4 or 8

as reasonably fast converging approximations of their limit for n→∞.

Accepting numerical evaluation of square roots, 10 use this to determine the minimal value of n such that 10 correct
decimal digits of π are generated. Compare p = 4 with p = 8 using b); also try p = 16.

(Set Digits to 20 and test using evalf.)

Exercise 6.2: Analyzing a real function.

Use Maple as a computational tool for analyzing the real function (Kurvendiskussion)

f(x) = arctan(x5)

including nice plots of the function and its first and second derivatives.

Exercise 6.3: Integration of rational functions.

a) Compute the indefinite integrals of the real functions

(i) f(x) =
1

1 + x4
(ii) f(x) =

1

1 + x8

b) Verify that the result obtained in a), (i) is indeed correct by differentiating it. Note that simplifying the outcome is not
straightforward; you can try normal and separately simplify or factor numerator and denominator. (Some trial and error
is unavoidable here.)

10 This means that it is not a purely rational aprpoximation.



c) (∗) Same question as in b), for a), (ii). Here you first have to interpret the answer delivered by int: 11

(1/8)*(sum(ln(x-_R)/_R^7,_R = RootOf(_Z^8+1)))

You have seen RootOf expressions before, and with your knowledge on integration of rational functions via partial fraction
decomposition it should be obvious that this is the correct answer, even if it is not given in explicit form.

Convert it into explicit form, using solve applied to the equation x8 + 1 = 0. Then, proceed as in b): Differentiate, and
try to recover the original integrand. (This is more laborious than for a), (i).)

Remark: Note that most roots of the equation x8 + 1 = 0 are complex, Therefore, in contrast to a), (i) we are dealing
here with a formally complex representation of the integral.

Exercise 6.4: Harmonic sums and natural logarithm.

We consider the harmonic sums

Sn =

n∑
j=1

1

j
.

a) Use 12 plots[listplot] to plot the points (xn, yn) =
(
n, Sn− ln(n)

)
in the (x, y)-plane. What do you observe for larger

values of n?

Hint: Use a for loop to generate the Sn and store the values Sn − lnn (evaluated in floating point) in a list.

b) Perform an experiment to find N ∈ N such that for n ≥ N the relative error (Sn − lnn)/Sn is below 10 %. What about
1 % accuracy?

c) The limit lim
n→∞

(
Sn − lnn

)
is called the Euler-Mascheroni constant, γ ≈ 0.5772156649. Perform an experiment to find

N ∈ N such that for n ≥ N the relative error
(
Sn − (lnn+ γ)

)
/Sn is below 1 h.

(In Maple, the constant gamma is predefined, and you can evaluate it using evalf.)

d) Determine experimentally the constant p > 0 such that Sn − (lnn+ γ) ∼ n−p for n→∞.

Hint: ‘∼’ means (approximate) equality up to a factor independent of n. Compare the results for n = 102, 102, 103, . . .,
then it becomes very plausible what the correct value of p must be.

Exercise 6.5: An extremum problem.

·
8 mx

3 m

L

α

A rod is positioned as shown in the figure. Its length L depends on the angle α, with L(α)→∞ for α ↓ 0 and for α ↑ π2 .

Question: For which angle α ∈ (0, π2 ) does the length L = L(α) become minimal? The minimal length and the corresponding
distance x is to be determined.

Solve this problem with the help of Maple, and evaluate the results in floating point using evalf. Also, give the resulting value
for α in degrees ◦ .

Remark: The minimal length is not given by L = 15 m.

11 Here you see the answer delivered by Maple 2017.
12 Syntax: plots[listplot](...) activates the function listplot contained in the package plots. You can also activate the complete package

using with(plots); and simply call listplot.



Exercise 6.6: The discrete sine transform.

Let n ∈ N and consider the points tj := j/(n + 1), j = 1 . . . n. Then, ∆ := (t1, t2, . . . , tn) is a sequence of equispaced grid
points in the interval [0, 1]. The functions sk : ∆→ R, k = 1 . . . n, defined by

sk(tj) = sin(k π tj), j = 1 . . . n,

are discrete sine functions of varying frequency.

Let x : ∆→ R be a function defined on ∆, and denote 13 xj := x(tj), j = 1 . . . n. The discrete sine transform (DST) of x is
defined as the vector of ‘Fourier coefficients’ x̂ = (x̂1, . . . , x̂n) ∈ Rn,

x̂k =

n∑
j=1

xj sin(k π tj), k = 1 . . . n . (DST)

The x̂k are exactly the coefficients of a representation of x in the form

x =
2

n+ 1

n∑
k=1

x̂k sk ,

i.e.,

xj =
2

n+ 1

n∑
k=1

x̂k sin(k π tj), j = 1 . . . n . (IDST)

This means that x is decomposed into discrete sine frequencies. (IDST) is called the inverse discrete sine transform; it is
identical with the DST up to the scaling factor 2

n+1 .

a) Design two procedures dst(y) and idst(y) which compute the [I] DST of y (we represent y = x or y = x̂ by a list). Verify
by example that, indeed, idst(dst(x))=x and vice versa. Choose an example and use plots[pointplot] to visualize
the behavior of the x̂k in dependence of k.

Natural choice for x : xj = f(tj) for some given function f : [0, 1]→ R satisfying f(0) = f(1) = 0. For smooth functions f
the x̂k should significantly decay with increasing k. For strongly oscillating functions the behavior is different (test).

b) Verify by example that the rescaled DST (identical with the rescaled IDST)

x∗ := dst*(x) =
(√

2
n+1

n∑
j=1

xj sin(k π tj), k = 1 . . . n
)

is an isometric operation, i.e.,
n∑
k=1

(x∗k)2 =
n∑
k=1

x2
k.

Exercise 6.7: Newton type zero finders.

Newton iteration is a standard approach for determining numerically (in floating point arithmetic) a zero ξ of a differentiable
real function f(x), starting from an initial guess x0, 14

xi := xi−1 −
f(xi−1)

f ′(xi−1)
, i = 1, 2, 3, 4, . . . (N1)

a) Design a procedure newton(...) which expects a function f , an initial guess x0 ∈ R and a tolerance parameter tol as
its arguments and which performs the iteration (N1) until |f(xi)| ≤ tol. Your procedure returns the list [i, xi]. If the
criterion |f(xi)| is not satisfied after 100 steps, we consider the iteration having failed. In this case, return [NULL]. (NULL
is the Maple symbol for ‘nothing’.)

A simple test example: Approximation of
√

2: Solve the equation x2 = 2 by Newton iteration, starting from x0 = 1.5.

b) An improved iteration involving the second derivative f ′′ reads

xi = xi−1 −
f(xi−1)

f ′(xi−1)

(
1 +

1

2

f(xi−1) f ′′(xi−1)

f ′(xi−1)2

)
(N2)

Proceed as in a) and compare both versions: Which one converges faster?

Hint: For testing, choose e.g. Digits=100 and tol = 1E-90.

13 Think of a function which takes the value 0 for t0 = 0 and tn+1 = 1. The sk(tj) also have this property.
14 (N1) means that xi+1 is the solution of the (at xi) linearized problem f(xi) + f ′(xi)(x− xi) = 0.



Exercise 6.8: Asymptotic analysis of Newton-type zero finders.

We study the local speed of convergence of the Newton iteration (N1) in a vicinity of an exact solution ξ in the following
way: Assume we already know a good approximation x = ξ+ ε (with ε small). Now we consider a Newton step starting from
x,

x 7→ x̂ := x− f(x)

f ′(x)
with x = ξ + ε

and analyze the new error x̂− ξ in dependence of ε. Proceed as follows: 15

a) Generate the expression for x̂ and use subs to replace x by ξ + ε. Now, use taylor to perform a Taylor expansion in ε
about ε = 0 up to a remainder O(ε2). Simplify the resulting expression and use subs to replace the subexpression f(ξ)
by 0. Interpret the outcome.

b) Same as in a), for the modified Newton iteration (N2). What do you see? Oops – use Taylor expansion of a higher
order.

15 This exercise involves only symbolic operations – a short computer-aided proof. f is an ‘anonymous’ function, it is not defined in a particular
way. taylor can work with such anonymous functions. Note that f ′(ξ) is not allowed to be 0, i.e., ξ must be a simple zero of f .


