Übungsaufgaben zur VU Computermathematik Serie 7

Exercise 7.1: Recursive computation of parameter-dependent integrals.

a) Use integration by parts (manually) to derive a recursion w.r.t. n for the integrals

$$I_n := \int x^n e^{\lambda x} dx \qquad (\lambda \neq 0, \ n \in \mathbb{N}_0),$$

and implement this recursion in form of a recursive procedure IR(x,n). Compare your results with the results delivered by int.

Remark: Maple knows an explicit expression for I_n for general n (*check*).

- **b)** Does **a)** provide the correct answer when taking the limit $\lambda \to 0$?
- c) Same as in a), for

$$\int \frac{dx}{\left(1+x^2\right)^n} \, .$$

Exercise 7.2: Solution of linear two-step recursions.

a) Consider the two-step recursion

 $x_n := a x_{n-1} + b x_{n-2}, \quad n = 2, 3, 4, \dots$ (R)

with given $a, b \in \mathbb{R}$. We wish to find the general form of the solution. To this end we use the ansatz

 $x_n = \lambda^n$

with some (unknown) parameter λ and plug it into (R). Now it is easy to see that there are two possible values $\lambda = \lambda_1$ and $\lambda = \lambda_2$ such that the ansatz works (*check*).

Use Maple to express λ_1 and λ_2 in terms of the arbitrary parameters a and b. (Depending on a and b, the solution may be real or complex).

Then, the general solution of recursion (R) is given by

 $c_1 \lambda_1^n + c_2 \lambda_2^n$

with arbitrary constants c_1, c_2 .

However, there is a special case where the solution looks different. You may find out how the general solution looks like in this special case. (If not, don't worry.)

b) Design a procedure twostep(a,b,x0,x1,n) which delivers an expression depending on n (n = 0, 1, 2, 3, 4, ...) for the solution x_n for given starting values x0 and x1.

Hint: Use solve to determine the respective constants c_1 and c_2 . What happens in the special case mentioned in **a**)?

c) Generate an explicit formula for the Fibonacci numbers F_n defined by $F_0 = 0$, $F_1 = 1$, and

$$F_n := F_{n-1} + F_{n-2}, \quad n = 2, 3, 4, \dots$$

Exercise 7.3: Facing the devil.

a) Consider the sequence of continuous functions ${}^{16} D_n: [0,1] \to [0,1]$, recursively defined by $D_1(x) := x$ and

$$D_n(x) := \begin{cases} \frac{1}{2} D_{n-1}(3x), & 0 \le x < \frac{1}{3}, \\ \frac{1}{2}, & \frac{1}{3} \le x \le \frac{2}{3}, \\ \frac{1}{2} \left(1 + D_{n-1}(3x-2)\right), & \frac{2}{3} < x \le 1. \end{cases}$$

for n > 1.

Implement these functions in form of a recursive procedure Devil(x,n) and produce plots for several values of n.

Note that it makes no sense to call Devil(x,n) with a numerical value n but unspecified x. *Why?* As a consequence, you must not pass Devil(x,n) to the plot command, but 'Devil(x,n)'. *Explain*.

b) Include option remember to your procedure from a) and compare execution times (use time()). Do you observe a difference?

Exercise 7.4: A special class of matrices.

a) A quadratic matrix A is called <u>circulant</u> if it is of the form

A =	a_1	a_n	a_{n-1}	a_{n-2}	• • •	a_2
	a_2	a_1	a_n	a_{n-1}		a_3
	a_3	a_2	a_1	a_n		a_4
	a_4	a_3	a_2	a_1		a_5
		·	·	·	·	
	a_n	a_{n-1}	a_{n-2}	a_{n-3}		a_1

Design a procedure iscirculant(A) which expects a quadratic matrix as its argument and which returns true if it is circulant and false otherwise.

b) Circulant matrices are examples of 'data-sparse' matrices: A circulant matrix is uniquely defined by its first column.

Assume that a vector c represents a circulant matrix A, namely via its first column. Design a procedure which expects c and another vector x as its arguments and which computes the matrix-vector product $A \cdot x$ in an efficient way, without explicitly building the matrix A.

Exercise 7.5: Divided differences.

For a function f(x) and a given set of pairwise distinct values (nodes) $\{x_1, \ldots, x_n\}$, the so-called *divided differences* of f with respect to the x_j are defined recursively as

$$f[x_j, \dots, x_k] := \begin{cases} f(x_j) & \text{for } j = k, \\ \frac{f[x_{j+1}, \dots, x_k] - f[x_j, \dots, x_{k-1}]}{x_k - x_j} & \text{for } j < k. \end{cases}$$

a) Implement the evaluation of the divided differences by means of a recursive Maple procedure realizing the mapping $(j,k) \mapsto f[x_j, \ldots, x_k]$ for a function f and a list of nodes x_j :

dd := proc(j,k,f,nodes)

Example: The call dd(1,3,sin,[x[1],x[2],x[3],x[4]]) returns

$$\frac{\frac{\sin(x_3) - \sin(x_2)}{x_3 - x_2} - \frac{\sin(x_2) - \sin(x_1)}{x_2 - x_1}}{x_3 - x_1}$$

b) Use a) to verify by examples the product formula

$$(f \cdot g)[x_j, \dots, x_k] = \sum_{\ell=j}^k f[x_j, \dots, x_\ell] \cdot g[x_\ell, \dots, x_k]$$

c) Verify for n = 1, 2, 3, 4, ... that for an arbitrary polynomial p(x) of degree n and arbitrary nodes $x_1, ..., x_{n+1}$ we have ¹⁷

¹⁶ Remark: The limiting function $f(x) = \lim_{n \to \infty} fn(x)$ is continuous and it is differentiable almost everywhere, with derivative 0. The graph of the function f is called <u>Devil's staircase</u>.

 $^{^{17}\,}$ Note that an empty product is 1.

$$p(x) \equiv \sum_{k=1}^{n+1} p[x_1, \dots, x_k] \cdot (x - x_1) \cdots (x - x_{k-1})$$

Remark: This is called the Newton representation of the polynomial. It is used in interpolation algorithms.

Exercise 7.6: Confluent divided differences.

Within the setting of Exercise 7.5, we now drop the assumption that the nodes x_i are pairwise distinct. We define

$$f[x_j, \dots, x_k] := \begin{cases} f(x_j) & \text{for } j = k, \\ \frac{f[x_{j+1}, \dots, x_k] - f[x_j, \dots, x_{k-1}]}{x_k - x_j} & \text{for } j < k \text{ and } x_j \neq x_k \text{ (non-confluent case)} \\ \lim_{\varepsilon \to 0} \frac{f[x_{j+1}, \dots, x_k + \varepsilon] - f[x_j, \dots, x_{k-1}]}{\varepsilon} & \text{for } j < k \text{ and } x_j = x_k \text{ (confluent case)}. \end{cases}$$

This is well-defined if f has a sufficient high degree of differentiability (depending on the 'amount of confluence').

a) Implement the evaluation of the confluent divided differences by means of a recursive Maple procedure realizing the mapping $(j,k) \mapsto f[x_j, \ldots, x_k]$ for a function f and a list of nodes x_j :

Example: The call cdd(1,3,f,[x[1],x[2],x[2]]) returns

$$\frac{D(f)(x_2) - \frac{f(x_2) - f(x_1)}{x_2 - x_1}}{x_2 - x_1}$$

b) Verify by examples that the product formula

$$(f \cdot g)[x_j, \dots, x_k] = \sum_{\ell=j}^k f[x_j, \dots, x_\ell] \cdot g[x_\ell, \dots, x_k]$$

remains valid.

- c) What is $f[\underbrace{x,\ldots,x}_{n \text{ times}}]$?
- d) Also identity 7.5 c) remains valid. What does it mean for $x_1 = x_2 = \ldots = x_{n+1}$?
- e) Verify by examples that the value of $f[x_j, \ldots, x_k]$ is invariant under any permutation of the nodes x_ℓ .

Exercise 7.7: A two-dimensional integral.

Let an arbitrary triangle $\Delta = \overline{P_1 P_2 P_3} \subseteq \mathbb{R}^2$ be given, with vertices $P_j = (x_j, y_j)$. To compute the integral of a real-valued function f(x, y) defined over Δ , we represent points the $(x, y) \in \Delta$ in the form

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x(\xi,\eta) \\ y(\xi,\eta) \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \xi \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \end{bmatrix} + \eta \begin{bmatrix} x_3 - x_1 \\ y_3 - y_1 \end{bmatrix}, \quad 0 \le \xi + \eta \le 1$$

with coordinates $(\xi, \eta) \in \Delta_{\text{ref}}$, where Δ_{ref} is the simple 'reference triangle' with vertices (0,0), (1,0), and (0,1). Note that $(x(0,0), y(0,0)) = (x_1, y_1)$, $(x(1,0), y(1,0)) = (x_2, y_2)$, and $(x(0,1), y(0,1)) = (x_3, y_3)$.

Applying the 2-dimensional substitution formula for integrals, we can now express the integral of f over Δ by an integral over Δ_{ref} :

$$\iint_{\Delta} f(x,y) \, dy \, dx = \iint_{\Delta_{\mathrm{ref}}} |\delta(\xi,\eta)| \, f(x(\xi,\eta), y(\xi,\eta)) \, d\eta \, d\xi$$

with the Jacobian determinant $\delta(\xi, \eta)$ of the coordinate transformation $(\xi, \eta) \mapsto (x, y)$. In our case, $\delta(\xi, \eta)$ is constant:

$$\delta(\xi,\eta) \equiv \delta = (x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1),$$

which corresponds to the ratio of the areas of the two triangles. Thus,

$$\iint_{\Delta} f(x,y) \, dy \, dx \, = \, |\delta| \, \cdot \, \int_{\xi=0}^{1} \, \int_{\eta=0}^{1-\xi} f(x(\xi,\eta), y(\xi,\eta)) \, d\eta \, d\xi$$

- a) Design a procedure triangleint (Delta,f) which computes the integral in this way. Specify the vertices of the triangle in form of a list, $[[x_1, y_1], [x_2, y_2], [x_3, y_3]]$.
- b) If the integral cannot be computed exactly, one approximates it by replacing f by a simpler function. A very basic variant is to replace f by a an affine interpolant of the form

$$p(x, y) = a + bx + cy$$

chosen in such a way that $p(x_j, y_j) = f(x_j, y_j), j = 1, 2, 3$. We claim that the integral over p can be written in the form

$$\iint_{\Delta} p(x,y) \, dy \, dx = Q(p) := \omega_1 \, p(P_1) + \omega_2 \, p(P_2) + \omega_3 \, p(P_3) \,. \tag{Q}$$

Determine the parameters $\omega_1, \omega_2, \omega_3$ such that (Q) is indeed valid, first for $\Delta = \Delta_{ref}$ and then for an arbitrary Δ .

Hint: Using (Q) as an ansatz, consider the functions p(x, y) = 1, p(x, y) = x, and p(x, y) = y. This gives you 3 linear equations for the coefficients ω_j .

Exercise 7.8: Your favorite package?

Look at the help page ? index, and select packages. Here you see a complete list of available packages.

Choose one of them, have a closer look, and prepare a small demo of its basic features.

If you have no other special preference, you may take a closer look at plottools or geometry. Aficionados of combinatorics may look at combinat (see also combstruct). And there are many, many more.