Übungsaufgaben zur VU Computermathematik

Serie 7

Exercise 7.1: Recursive computation of parameter-dependent integrals.

a) Use integration by parts (manually) to derive a recursion w.r.t. n for the integrals

$$
I_{n}:=\int x^{n} e^{\lambda x} d x \quad\left(\lambda \neq 0, n \in \mathbb{N}_{0}\right)
$$

and implement this recursion in form of a recursive procedure $\operatorname{IR}(x, n)$. Compare your results with the results delivered by int.
Remark: Maple knows an explicit expression for I_{n} for general n (check).
b) Does a) provide the correct answer when taking the limit $\lambda \rightarrow 0$?
c) Same as in a), for

$$
\int \frac{d x}{\left(1+x^{2}\right)^{n}}
$$

Exercise 7.2: Solution of linear two-step recursions.

a) Consider the two-step recursion

$$
\begin{equation*}
x_{n}:=a x_{n-1}+b x_{n-2}, \quad n=2,3,4, \ldots \tag{R}
\end{equation*}
$$

with given $a, b \in \mathbb{R}$. We wish to find the general form of the solution. To this end we use the ansatz

$$
x_{n}=\lambda^{n}
$$

with some (unknown) parameter λ and plug it into (R). Now it is easy to see that there are two possible values $\lambda=\lambda_{1}$ and $\lambda=\lambda_{2}$ such that the ansatz works (check).

Use Maple to express λ_{1} and λ_{2} in terms of the arbitrary parameters a and b. (Depending on a and b, the solution may be real or complex).
Then, the general solution of recursion (R) is given by

$$
c_{1} \lambda_{1}^{n}+c_{2} \lambda_{2}^{n}
$$

with arbitrary constants c_{1}, c_{2}.
However, there is a special case where the solution looks different. You may find out how the general solution looks like in this special case. (If not, don't worry.)
b) Design a procedure twostep ($a, b, x 0, x 1, n$) which delivers an expression depending on n ($n=0,1,2,3,4, \ldots$) for the solution x_{n} for given starting values x 0 and x 1 .
Hint: Use solve to determine the respective constants c_{1} and c_{2}. What happens in the special case mentioned in a)?
c) Generate an explicit formula for the Fibonacci numbers F_{n} defined by $F_{0}=0, F_{1}=1$, and

$$
F_{n}:=F_{n-1}+F_{n-2}, \quad n=2,3,4, \ldots
$$

Exercise 7.3: Facing the devil.

a) Consider the sequence of continuous functions ${ }^{16} D_{n}:[0,1] \rightarrow[0,1]$, recursively defined by $D_{1}(x):=x$ and

$$
D_{n}(x):=\left\{\begin{array}{cl}
\frac{1}{2} D_{n-1}(3 x), & 0 \leq x<\frac{1}{3} \\
\frac{1}{2}, & \frac{1}{3} \leq x \leq \frac{2}{3} \\
\frac{1}{2}\left(1+D_{n-1}(3 x-2)\right), & \frac{2}{3}<x \leq 1
\end{array}\right.
$$

for $n>1$.
Implement these functions in form of a recursive procedure Devil (x, n) and produce plots for several values of n.
Note that it makes no sense to call $\operatorname{Devil}(\mathrm{x}, \mathrm{n})$ with a numerical value n but unspecified x . Why? As a consequence, you must not pass $\operatorname{Devil}(\mathrm{x}, \mathrm{n})$ to the plot command, but 'Devil (x,n)'. Explain.
b) Include option remember to your procedure from a) and compare execution times (use time()). Do you observe a difference?

Exercise 7.4: A special class of matrices.

a) A quadratic matrix A is called circulant if it is of the form

$$
A=\left(\begin{array}{cccccc}
a_{1} & a_{n} & a_{n-1} & a_{n-2} & \ldots & a_{2} \\
a_{2} & a_{1} & a_{n} & a_{n-1} & \ldots & a_{3} \\
a_{3} & a_{2} & a_{1} & a_{n} & \ldots & a_{4} \\
a_{4} & a_{3} & a_{2} & a_{1} & \ldots & a_{5} \\
& \ddots & \ddots & \ddots & \ddots & \\
a_{n} & a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_{1}
\end{array}\right)
$$

Design a procedure iscirculant (A) which expects a quadratic matrix as its argument and which returns true if it is circulant and false otherwise.
b) Circulant matrices are examples of 'data-sparse' matrices: A circulant matrix is uniquely defined by its first column.

Assume that a vector c represents a circulant matrix A, namely via its first column. Design a procedure which expects c and another vector x as its arguments and which computes the matrix-vector product $A \cdot x$ in an efficient way, without explicitly building the matrix A.

Exercise 7.5: Divided differences.

For a function $f(x)$ and a given set of pairwise distinct values (nodes) $\left\{x_{1}, \ldots, x_{n}\right\}$, the so-called divided differences of f with respect to the x_{j} are defined recursively as

$$
f\left[x_{j}, \ldots, x_{k}\right]:=\left\{\begin{array}{cl}
f\left(x_{j}\right) & \text { for } j=k \\
\frac{f\left[x_{j+1}, \ldots, x_{k}\right]-f\left[x_{j}, \ldots, x_{k-1}\right]}{x_{k}-x_{j}} & \text { for } j<k
\end{array}\right.
$$

a) Implement the evaluation of the divided differences by means of a recursive Maple procedure realizing the mapping $(j, k) \mapsto$ $f\left[x_{j}, \ldots, x_{k}\right]$ for a function f and a list of nodes x_{j} :

$$
\mathrm{dd}:=\operatorname{proc}(\mathrm{j}, \mathrm{k}, \mathrm{f}, \text { nodes })
$$

Example: The call dd (1, 3, $\sin ,[\mathrm{x}[1], \mathrm{x}[2], \mathrm{x}[3], \mathrm{x}[4]])$ returns

$$
\frac{\frac{\sin \left(x_{3}\right)-\sin \left(x_{2}\right)}{x_{3}-x_{2}}-\frac{\sin \left(x_{2}\right)-\sin \left(x_{1}\right)}{x_{2}-x_{1}}}{x_{3}-x_{1}}
$$

b) Use a) to verify by examples the product formula

$$
(f \cdot g)\left[x_{j}, \ldots, x_{k}\right]=\sum_{\ell=j}^{k} f\left[x_{j}, \ldots, x_{\ell}\right] \cdot g\left[x_{\ell}, \ldots, x_{k}\right]
$$

c) Verify for $n=1,2,3,4, \ldots$ that for an arbitrary polynomial $p(x)$ of degree n and arbitrary nodes x_{1}, \ldots, x_{n+1} we have ${ }^{17}$

[^0]$$
p(x) \equiv \sum_{k=1}^{n+1} p\left[x_{1}, \ldots, x_{k}\right] \cdot\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right)
$$

Remark: This is called the Newton representation of the polynomial. It is used in interpolation algorithms.

Exercise 7.6: Confluent divided differences.

Within the setting of Exercise 7.5, we now drop the assumption that the nodes x_{j} are pairwise distinct. We define

$$
f\left[x_{j}, \ldots, x_{k}\right]:=\left\{\begin{array}{cl}
f\left(x_{j}\right) & \text { for } j=k, \\
\frac{f\left[x_{j+1}, \ldots, x_{k}\right]-f\left[x_{j}, \ldots, x_{k-1}\right]}{x_{k}-x_{j}} & \text { for } j<k \text { and } x_{j} \neq x_{k} \\
\quad \text { (non-confluent case), } \\
\lim _{\varepsilon \rightarrow 0} \frac{f\left[x_{j+1}, \ldots, x_{k}+\varepsilon\right]-f\left[x_{j}, \ldots, x_{k-1}\right]}{\varepsilon} & \text { for } j<k \text { and } x_{j}=x_{k} \quad \text { (confluent case). }
\end{array}\right.
$$

This is well-defined if f has a sufficient high degree of differentiability (depending on the 'amount of confluence').
a) Implement the evaluation of the confluent divided differences by means of a recursive Maple procedure realizing the mapping $(j, k) \mapsto f\left[x_{j}, \ldots, x_{k}\right]$ for a function f and a list of nodes x_{j} :
cdd := proc(j,k,f,nodes)

Example: The call cdd (1, 3,f,[x[1] , x[2] , x[2]]) returns

$$
\frac{D(f)\left(x_{2}\right)-\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}}{x_{2}-x_{1}}
$$

b) Verify by examples that the product formula

$$
(f \cdot g)\left[x_{j}, \ldots, x_{k}\right]=\sum_{\ell=j}^{k} f\left[x_{j}, \ldots, x_{\ell}\right] \cdot g\left[x_{\ell}, \ldots, x_{k}\right]
$$

remains valid.
c) What is $f[\underbrace{x, \ldots, x}_{n \text { times }}]$?
d) Also identity $\mathbf{7 . 5} \mathbf{c}$) remains valid. What does it mean for $x_{1}=x_{2}=\ldots=x_{n+1}$?
e) Verify by examples that the value of $f\left[x_{j}, \ldots, x_{k}\right]$ is invariant under any permutation of the nodes x_{ℓ}.

Exercise 7.7: A two-dimensional integral.

Let an arbitrary triangle $\Delta=\overline{P_{1} P_{2} P_{3}} \subseteq \mathbb{R}^{2}$ be given, with vertices $P_{j}=\left(x_{j}, y_{j}\right)$. To compute the integral of a real-valued function $f(x, y)$ defined over Δ, we represent points the $(x, y) \in \Delta$ in the form

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x(\xi, \eta) \\
y(\xi, \eta)
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]+\xi\left[\begin{array}{l}
x_{2}-x_{1} \\
y_{2}-y_{1}
\end{array}\right]+\eta\left[\begin{array}{l}
x_{3}-x_{1} \\
y_{3}-y_{1}
\end{array}\right], \quad 0 \leq \xi+\eta \leq 1
$$

with coordinates $(\xi, \eta) \in \Delta_{\text {ref }}$, where $\Delta_{\text {ref }}$ is the simple 'reference triangle' with vertices $(0,0),(1,0)$, and $(0,1)$. Note that $(x(0,0), y(0,0))=\left(x_{1}, y_{1}\right),(x(1,0), y(1,0))=\left(x_{2}, y_{2}\right)$, and $(x(0,1), y(0,1))=\left(x_{3}, y_{3}\right)$.
Applying the 2-dimensional substitution formula for integrals, we can now express the integral of f over Δ by an integral over $\Delta_{\text {ref }}$:

$$
\iint_{\Delta} f(x, y) d y d x=\iint_{\Delta_{\mathrm{ref}}}|\delta(\xi, \eta)| f(x(\xi, \eta), y(\xi, \eta)) d \eta d \xi
$$

with the Jacobian determinant $\delta(\xi, \eta)$ of the coordinate transformation $(\xi, \eta) \mapsto(x, y)$. In our case, $\delta(\xi, \eta)$ is constant:

$$
\delta(\xi, \eta) \equiv \delta=\left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right)-\left(x_{3}-x_{1}\right)\left(y_{2}-y_{1}\right),
$$

which corresponds to the ratio of the areas of the two triangles. Thus,

$$
\iint_{\Delta} f(x, y) d y d x=|\delta| \cdot \int_{\xi=0}^{1} \int_{\eta=0}^{1-\xi} f(x(\xi, \eta), y(\xi, \eta)) d \eta d \xi
$$

a) Design a procedure triangleint (Delta,f) which computes the integral in this way. Specify the vertices of the triangle in form of a list, $\left[\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right],\left[x_{3}, y_{3}\right]\right]$.
b) If the integral cannot be computed exactly, one approximates it by replacing f by a simpler function. A very basic variant is to replace f by a an affine interpolant of the form

$$
p(x, y)=a+b x+c y
$$

chosen in such a way that $p\left(x_{j}, y_{j}\right)=f\left(x_{j}, y_{j}\right), j=1,2,3$. We claim that the integral over p can be written in the form

$$
\begin{equation*}
\iint_{\Delta} p(x, y) d y d x=Q(p):=\omega_{1} p\left(P_{1}\right)+\omega_{2} p\left(P_{2}\right)+\omega_{3} p\left(P_{3}\right) . \tag{Q}
\end{equation*}
$$

Determine the parameters $\omega_{1}, \omega_{2}, \omega_{3}$ such that (Q) is indeed valid, first for $\Delta=\Delta_{\text {ref }}$ and then for an arbitrary Δ.
Hint: Using (Q) as an ansatz, consider the functions $p(x, y)=1, p(x, y)=x$, and $p(x, y)=y$. This gives you 3 linear equations for the coefficients ω_{j}.

Exercise 7.8: Your favorite package?

Look at the help page ? index, and select packages. Here you see a complete list of available packages.
Choose one of them, have a closer look, and prepare a small demo of its basic features.
If you have no other special preference, you may take a closer look at plottools or geometry. Aficionados of combinatorics may look at combinat (see also combstruct). And there are many, many more.

[^0]: ${ }^{16}$ Remark: The limiting function $f(x)=\lim _{n \rightarrow \infty} f n(x)$ is continuous and it is differentiable almost everywhere, with derivative 0 . The graph of the function f is called Devil's staircase.

 17 Note that an empty product is 1 .

