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Serie 9

A mixed collection of exercises.

Exercise 9.1: Parametric plots.

a) Consult the help pages and find out how to plot planar or spatial curves given in parametric representation,

{(x(t), y(t)), t ∈ [a, b]} or {(x(t), y(t), z(t)), t ∈ [a, b]} .

Try some simple examples.

See ? plot/parametric, ? plots[spacecurve]; see also ? plots[tubeplot].

b) Solve a system two of linear differential equations, e.g.,

dsolve([D(x)(t)=-2*y(t),D(y)(t)=x(t)/2,x(0)=1,y(0)=1],[x(t),y(t)])

and plot the solution (x(t), y(t)) over an interval t ∈ [0, T ].

c) Same as b), for a system of three linear differential equations for x(t), y(t), z(t).

d) Consult ? plot3d and present some nice example.

Exercise 9.2: Animated plots.

a) The integral

F (t) =

∫ t

0

f(s) ds

is a function of t. For f(t) ≥ 0, it represents the area between the t - axis and the graph of f .

Choose f ≥ 0. Use plot, and display with option insequence=true, to produce an animated visualization of F (t) with
varying t. Use the plot option filled=true to colorize the area under the graph of f .

You may also use ? animate.

b) Present your own nice example (not simply one from the help page) using ? animatecurve.

Exercise 9.3: A special point plot.

Let a list of pairs (xi, yi), i = 1 . . . n (with float values) be given, where each pair is represented by a list of length 2. Plotting
the corresponding points (xi, yi) ∈ R2 using pointplot is straightforward. However, assume that we wish to highlight special
values in such a plot.

Produce a pointplot where the points (xi, yi) with

|yi − 1| ≤ ε or |yi + 1| ≤ ε

are displayed in a color different from the color used for the other points.



You may, e.g., choose ε = 10−2, and use blue color, and red color for highlighting. See the example in the plot above.

Exercise 9.4: Numerical approximation with error estimation.

Assume that a function f(t) satisfies f(0) = f ′(0) = . . . = f (n−1)(0) = 0 for some n ∈ N. Then, by Taylor’s theorem,

f(t) =
tn

n!
f (n)(0) +O(|t|n+1

) for t→ 0 .

For such a function f , we can approximate the integral∫ t

0

f(s) ds

over a (small) interval [0, t] by∫ t

0

tn

n!
f (n)(0) dt =

tn+1

(n+ 1)!
f (n)(0) ≈ t

n+ 1
f(t) , (Q)

which involves only a single evaluation of f .

We now consider a practical application of this integral approximation: Assume that we are approximating the function 24

et by a rational function r(t). We choose a so-called (3,3) Padé approximation,

r(t) = numapprox[pade](exp(t),t,[3,3]) .

a) Verify using taylor that r(t) = et +O(|t|7) for t→ 0.

b) The function et is the solution of the differential equation y′(t)− y(t) = 0, y(0) = 1.

Compute the residual of r(t) with respect to this differential equation, i.e., the rational function

δ(t) := r′(t)− r(t) .

Verify using taylor that δ(0) = δ′(0) = . . . = δ(5)(0) = 0 and δ(6)(0) 6= 0, i.e., δ(t) = O(|t|6) for t→ 0.

c) Due to e0 = r(0) = 1 and by definition of δ(t), the approximation error ε(t) := r(t)− et satisfies the differential equation

ε′(t) = ε(t) + δ(t) , ε(0) = 0 ,

which implies

ε(t) =

∫ t

0

e(t−s) δ(s)︸ ︷︷ ︸
=: f(s;t)

ds .

Verify that the integrand f(s; t) (considered as a function of s for fixed t) satisfies f(0; t) = f ′(0; t) = . . . = f (5)(0; t) = 0
and f (6)(0; t) 6= 0.

d) In order to obtain an easily computable estimate for the error ε(t) = r(t)− et (control of accuracy!), we approximate its
integral representation by the quadrature formula (Q), i.e., we compute

ε̃(t) :=
t

7
f(t; t) =

t

7
δ(t) ≈ ε(t) .

Verify using taylor that

ε̃(t)− ε(t) = O(|t|8) for t→ 0 .

This shows that the error estimate is very precise for sufficiently small t, with a relative deviation of size O(t). Visualize
this by plotting the true error ε(t) = r(t)− et and its estimate ε̃(t) for t = 0 . . . 1. Use also plots[logplot] for a better
visualization of the asymptotic behavior for t→ 0.

24 This is a basic example. In a practical setting we would e.g. consider an approximation of the matrix exponential etA, which may be difficult
to compute exactly if the dimension of A is large.



Exercise 9.5: map, map2; heap.

a) Explain, by be means of a small example worksheet, the use of map and map2.

b) A heap is an data structure (usually implemented using a tree structure) for dynamically storing objects from a (in
practice: very large) ordered set, in such a way that efficient direct access to the maximal element is provided (for seeking
or removing it). New objects can be inserted into an existing heap.

Check the help page of the small package ? heap. Look at the example provided on the help page. Generate the empty
heap with ordering function f:=(a,b)->evalb(a<b) for storing integer values. The heap will now internally store the
elements in sorted order. Then, insert a number of integers in random order and extract the maximal element.

Remark: The dynamical data structures queue and stack are also available, for FIFO (First In, First Out) access and
LIFO (Last In, First Out) access, respectively. Usage is similar as for heaps.

Exercise 9.6: File handling.

a) Take one of your worksheets which requires no interactive input and export it to a Maple language (text) file (file type
.mpl). Then execute it using maple (or cmaple) and redirect the output to another text file.

Remark: This is useful if longer jobs have to run in batch mode. Depending on your installation, the command line
version of Maple is called maple or cmaple. If this is not in your execution path, check its location.

b) Write a short procedure and use save to store its source text on a .mpl file. Change this file with a text editor and read
it back to your worksheet using read. Check what happens if your code contains a syntax error.

c) Assume that the coefficients of an m×n - matrix consisting of columns of a given (a priori known) length m stored on a
text file. Each line contains one column of the matrix (values separated by spaces).

Design a procedure which expects the name of the text file as its argument and which returns the matrix in form of an
object of type Matrix.

Hint: Use ? readline and ? sscanf

Exercise 9.7: Try to catch.

Similarly as in other languages (e.g., C or Matlab), try .. catch is a convenient construct to supervise the execution of
parts of a code where successful execution is not a priori guaranteed and some error may occur. Typically this is used within
procedures.

try

...

... # do something; if it is O.K. then it is O.K.

...

catch:

# specify what has to be done if try has failed, e.g.

error("oops, this does not work"):

# or some alternative part of code to be executed:

...

...

end try:

We realize a very simple example:

Use the try .. catch construct twice (in a nested way) within a procedure which tries to invert a given matrix A. If
straightforward inversion fails, your procedure tries to compute the so-called pseudo-inverse (ATA)−1AT . If this also fails,
then your procedure exits with an error message. Find (numerical) examples for all three cases.

This is connected with a question about basic linear algebra: What type of failure occurs for what type of matrix? Do you
know what the pseudo-inverse represents? 25

25 You can nest this further and return a (generalized) pseudo-inverse which is well-defined for any matrix A. But this is out of scope here.



Exercise 9.8: Drawing a fractal tree.

Design a recursive procedure tree(level,pos,n,len,scale) which generates a plot of a ‘fractal’ tree.

The arguments:

• level specifies the desired number of recursive levels.

• pos is a list of length 2 containing the cartesian coordinates of the root of the current tree.

• The current tree consists of n branches emanating from the root with randomly chosen inclinations (angles between
−45◦ and +45◦), and len specifies the current (common) length of these branches.

• scale is a fixed factor with which len is multiplied when proceeding to the next recursive level.

The recursion works in the following way.

tree(level,pos,n,len,scale)

does the following job:

(i) Generate the n branches of the tree specified by the arguments pos, n, and len.

(ii) If level> 1 : Perform n recursive calls of tree with level - 1, n new values for pos which correspond to the endpoints of
the branches of the current tree, and with len replaced by scale ∗ len.

The figure displayed above was generated by calling tree with n = 3, scale = 1/4 and non-randomly chosen (fixed) angles.

Hint: See ? rand. Use global variables p and counter. Before calling tree, these are initialized: p:=’p’, and counter:=0.
When tree builds up a branch, the value counter of is increased by 1, the plot of the branch is generated using, e.g.,
plots[pointplot], and the resulting plot structure is saved in p[counter]. After activating tree you can render these
plots using plots[display]. Playing with the parameters you can generate different funny trees.


