Übungen zur Vorlesung
 Computermathematik

Serie 10

Aufgabe 10.1. Write a $\mathrm{EA}_{\mathrm{E}} \mathrm{T}_{\mathrm{X}}$-file which consists of this exercise sheet- headline of the sheet up to and including Aufgabe 10.2 . To generate a $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$-command \command, you can use \verb $\$ \command \mid.

Aufgabe 10.2. Write a text of your choice with headline and at least 400 words in $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$. Divide your text in at least two sections and add a table of contents. Use 12 pt as font size. What does the warning Overfull hbox mean? If necessary, modify the text such that $\mathrm{E}_{\mathrm{E}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ returns this warning. Take a look at the generated log-file text.log and prepare to be able to explain the content of the file during your exercise. How would one have to modify the text in order to avoid the warning Overfull hbox? (Use the command \- resp. \linebreak. What is the difference between \linebreak and \newline?) Add the reference from where you took your text in a footnote \footnote\{...\}.

Aufgabe 10.3. Write the following definition of the characteristic polynomial of a matrix $A \in \mathbb{R}^{n \times n}$

$$
p(t)=\operatorname{det}(A-t \cdot \mathrm{Id})=\left|\begin{array}{cccc}
a_{11}-t & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-t & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}-t
\end{array}\right|
$$

in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$. Note the symbol Id instead of $I d$ for the identity matrix. Hint. To generate the matrix, see slide 55.

Aufgabe 10.4. Write the following text in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, where the symbol \pm is generated by $\backslash \mathrm{pm}$: For given basis $b \in \mathbb{N}_{\geq 2}$, mantissa length $t \in \mathbb{N}$ and exponential bounds $e_{\min }<0<e_{\max }$ we define the set of normalized floating point numbers $\mathbb{F}:=\mathbb{F}\left(b, t, e_{\min }, e_{\max }\right) \subset \mathbb{R}$ by

$$
\mathbb{F}=\{0\} \cup\left\{\left(\sigma \sum_{k=1}^{t} a_{k} b^{-k}\right) b^{e} \mid \sigma \in\{ \pm 1\}, a_{j} \in\{0, \ldots, b-1\}, a_{1} \neq 0, e \in \mathbb{Z}, e_{\min } \leq e \leq e_{\max }\right\}
$$

The finite sum $a=\sum_{k=1}^{t} a_{k} b^{-k}$ is called normalized mantissa of a floating point number.
Aufgabe 10.5. Write the following text in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$: The Gamma function is defined as

$$
\Gamma(x):=\lim _{n \rightarrow \infty} \frac{n!n^{x}}{x(x+1) \cdots(x+n)}
$$

There holds the Weierstra β product representation

$$
\frac{1}{\Gamma(x)}=x \cdot e^{C x} \cdot \prod_{k=1}^{\infty}\left(1+\frac{x}{k}\right) e^{-x / k} \quad \text { mit } \quad C:=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\ln n\right) .
$$

Here, \infty is the symbol ∞, and • resp. \cdots is obtained by \cdot resp. \cdots.
Aufgabe 10.6. Write the following formula in $\mathrm{EA}_{\mathrm{E} X}$-file: For $q \in \mathbb{R}$, it holds that

$$
\lim _{n \rightarrow \infty} q^{n}= \begin{cases}+\infty & \text { falls } q>1 \\ 1 & \text { falls } q=1 \\ 0 & \text { falls }-1<q<1 \\ \nexists & \text { falls } q \leq-1\end{cases}
$$

The symbol \nexists is generated via \backslash nexists or \backslash not \backslash exists. Hint. See slide 55 to realize the cases.

Aufgabe 10.7. Write the following text in $\mathrm{A}_{\mathrm{E}} \mathrm{X}$: Let $\Omega \subseteq \mathbb{R}^{d}$ (with $d \geq 3$) be a bounded domain with Lipschitz-boundary and $u \in C^{2}(\Omega)$ a solution of the Laplace equation $\Delta u:=\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} u=0$. Then, there holds the representation formula

$$
\forall x \in \Omega: \quad u(x)=\frac{1}{4 \pi} \int_{\partial \Omega} \frac{1}{|x-y|} \frac{\partial}{\partial \nu(y)} u(y) d y-\frac{1}{4 \pi} \int_{\partial \Omega}\left(\frac{\partial}{\partial \nu(y)} \frac{1}{|x-y|}\right) u(y) d y
$$

Here, \backslash partial is the symbol ∂.
Aufgabe 10.8. Formally a triangle T with vertices $x, y, z \in \mathbb{R}^{2}$ is defined as convex hull of these points

$$
\operatorname{conv}(x, y, z):=\{a x+b y+c z: a, b, c \geq 0 \text { with } a+b+c=1\}
$$

The triangle T is called non-degenerated if the vectors $y-x$ and $z-x$ are linearly independent. Formulate the following result with proof in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$. Let $T=\operatorname{conv}(x, y, z)$ and $\widetilde{T}=(\widetilde{x}, \widetilde{y}, \widetilde{z})$ be two non-degenerated triangles. Then, there exists an affine bijection $\Phi: T \rightarrow \widetilde{T}$, i.e., a bijective mapping of the form $\Phi(v)=$ $A v+b$ with a matrix $A \in \mathbb{R}^{2 \times 2}$ and a vector $b \in \mathbb{R}^{2}$. Here, the symbol \widetilde{T} is obtained by \backslash widetilde T. The symbol \times is obtained by \backslash times. Note the symbol conv instead of conv for the convex hull.

