problem sheet 6

discussion: week of Monday, 11.11.2019

- **6.1.** Consider quadrature rules Q^{2D} on the square $S = [0, 1]^2$.
 - a) Show: the midpoint rule Q(F) = F(0.5, 0.5) is exact for polynomials of the form F(x, y) = a + bx + cy.
 - **b)** Given $p \in \mathbb{N}_0$, give a quadrature formula Q^{2D} that is exact for polynomials of the form $F(x,y) = \sum_{i,j=0}^{p} a_{ij}x^iy^j$.
- **6.2.** Develop an adaptive algorithm for the integration of functions over the rectangle $[a_x, b_x] \times [a_y, b_y]$. Base your algorithm on the midpoint rule, i.e., $Q_{[a,b]\times[c,d]}(f) = (b-a)(d-c)f((a+c)/2, (b+d)/2)$. Hint: adapt the ideas of the 1d-adaptive algorithm of Problem 4.4. Test your adaptive algorithm for the integration over $[0,1]^2$ of the following functions:

$$f_1(x,y) = x^2$$
 and $f_2(x,y) = \begin{cases} 0 & x < y \\ 1 & x \ge y \end{cases}$

Use the tolerances $\tau=2^{-i},\ i=0,\ldots,15,$ and make a convergence plot (quadrature error versus tolerance) in loglog scale.

6.3. Consider the function

$$\varphi(x) = \sqrt{x+1} - \sqrt{x}$$

- a) Is the evaluation of φ well-conditioned for large x? Consider relative conditioning.
- b) Formulate a stable numerical realization of φ (*Hint:* You may use that a stable realization of $\sqrt{\cdot}$ is available.)
- **6.4.** The sequence u_k , $k = 0, 1, \ldots$, given by

$$u_1 := 2, u_{k+1} = 2^k \sqrt{2\left(1 - \sqrt{1 - (2^{-k}u_k)^2}\right)}$$
 (1)

converges to the number $\pi = 3.1415...$

- a) Compute (in matlab/python) the first 30 members of the sequence and the absolute error $|\pi u_k|$. When is the error minimal?
- b) Explain why you should expect that the error grows for $k \geq k_0$ for some k_0 . Extra Problem: Assume that in exact arithmetic the error is $|u_k \pi| \approx 2^{-2k}$. Use this to show that the minimal achievable error is reached for $k \approx 17$.
- **6.5.** (Aitken Δ^2 extrapolation)
 - a) The Aitken Δ^2 method can be used to accelerate the convergence of a sequence $(x_n)_n$ that converges to $x_\infty = \lim_{n \to \infty} x_n$. To that end, assume that the sequence $(x_n)_n$ has the form

$$x_n = x_\infty + Cq^n \tag{2}$$

with (unknown) x_{∞} , C, $q \in (0,1)$. Give a formula that "extrapolates" the sought limit x_{∞} from 3 successive sequence members x_n , x_{n+1} , x_{n+2} by assuming that all 3 values satisfy (2). Proceeding in this way for every n produces a new sequence $(\tilde{x}_n)_n$ that (sometimes) converges faster to x_{∞} than the original sequence. Apply this method to the sequence $(u_k)_k$ of Problem 6.4 to get a new sequence of improved approximations to π . What is the best possible error?

b) Suppose you don't know the limit π of the sequence $(u_k)_k$. How can you estimate the errors of the approximations u_k ? Can you formulate a sensible stopping criterion for the iteration (1)?