
Exercise sheet 3 for the course

“Computational Finance”

Problem 1. Let (S −Ke−r(T−t))+ ≤ C0 ≤ S and let

C(σ) = SΦ(d1(σ)−Ke−r(T−t)Φ(d2(σ))

be the call option price as a function of the volatility σ ≥ 0. Show that the equation
C(σ) = C0 has a unique solution.

Hint. For the existence, you can use one of the ”Greeks” to show that C(σ) is a continuous,
strictly increasing function. It might be smart to also consider the limits σ →∞ and σ → 0.
Regarding the uniqueness, calculate the appropriate ”Greeks” (∂

2C
∂σ2 = d1d2

σ
∂C
∂σ

) and think
about the number of inflection points the function can have.

Problem 2. A digital call option with strike price K and expiry date T has the payoff
function CT (S) = 1 if S > K and CT (S) = 0 otherwise. The corresponding digital put
option has the payoff PT (S) = 0 if S > K and PT (S) = 1 otherwise. Derive the price of a
digital call and put option at time t and show the call-put parity C(S, t)+P (S, t) = e−r(T−t).
(Remark: Digital options are also called binary options or cash-or-nothing options.)

Hint. Under the risk neutral measure (which exists due to our assumptions on the market),

dSt = rSt dt+ σSt dW
Q
t ,

where r is the risk free rate and WQ
t is a Brownian motion under Q.

Calculate C(t, S) = exp (−r(T − t))EQ[1ST>K ].
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T−t follows which dis-

tribution? Can you rewrite the term inside the indicator as something you know.

Problem 3. An exchange option gives the holder the right to exchange one asset for
another. The payoff function reads as V (S1, S2, T ) = (S1 − S2)

+, and V (S1, S2, t) solves
the two-dimensional Black-Scholes equation with correlation constant ρ. We assume that
the assets pay continuous dividends with rate q1, q2, respectively.
(i) Define the function U(ξ, t) by V (S1, S2, t) = S2U(ξ, t) with ξ = S1/S2. Show that U
solves the one-dimensional Black-Scholes equation

Ut +
1

2
σ2
∗ξ

2Uξξ + (q2 − q1)Uξ − q2U = 0, U(ξ, T ) = (ξ − 1)+,

where σ2
∗ = σ2

1 − 2ρσ1σ2 + σ2
2.

(ii) Assuming the same boundary conditions as for the standard Black-Scholes equations,
determine the price of V (S1, S2, t).

Hint. Calculate the first and second partial derivatives of S2U(ξ, t) with respect to S1, S2

and t and plug them into the multidimensional Black-Scholes equation.
Use the standard Black-Scholes equation to derive an expression in ξ.
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Problem 4. Consider the following parameters: r = 0.0328, T = 0.211, S0 = 5290.36.
Let the strikes K and corresponding call option prices be given by the following table,

K= 6000 6200 6300 6350 6400 6600 6800

Call price = 80,2 47,1 35,9 31,9 27,7 16,6 11,4
Approximate and plot the implied volatility for each option and plot the result.

Hint. Step 1: Implement the Black-Scholes formula as if you wanted to price an option.
Option 1:
Step 2: Choose an initial guess for σ, value the option with the given parameter and cal-
culate the difference to the market price given above.
Step 3:Implement the Newton method in the lecture notes (p. 36) in order to get a new
sigma and repeat ”Step 2” for 20 iterations or until a certain accuracy is reached .
Option 2:
Step 2: Choose an upper (σu) and a lower bound (σl) for σ ( unrealistically high and low
...2, 0.001).
Step 3: Take the average σ0 = σl+σu

2
value the option with σ0. Calculate the difference to

the market price given above.
Step 3: Proceed to find the sigma corresponding to the market price by bisection.

Problem 5. Go to ”www.barchart.com” (or any other page providing options data).
Download the data and and repeat the previous exercise with real world data. You also
have to find a good proxy for the risk-free rate.
If your source provides ”implied volatility”, plot your own results against the given ones.

Hint. Be careful regarding the expiration date. You might have to re scale your risk-free
rate.

Remark 1. There was a question regarding the distribution of
∫ t
0
W n
s ds during the last

exercise and I attempt to provide a more satisfying answer:
What we can do/see easily with the tools from the lecture and measure theory 1+2:
1.) Existence of moments and bounds for them.

2.) If we have a Gaussian process Yt, then
∫ t
0
Ys ds is Gaussian as well.

3.) By using Feynman-Kac, technically, we could express the quantity E
[
exp

(
−
∫ t
0
f(Ws) ds

)]
.

What can we calculate explicitly:
1.) The expectation (Fubini)
2.)σ: The easiest way I came up with involves quite a bit of combinatorics. For those with
too much spare time: Write the square as a double integral and use Lemma 4.5 of the
paper ”Sample path properties of the local times of strongly symmetric Markov processes
via Gaussian processes” by ”Michael Marcus” and ”Jay Rosen”.

Describing the distribution in a satisfactory way seems to be not the easiest of tasks.


