Exercise sheet 4 for the course "Computational Finance" (first) Corrected version

Problem 1. Consider the stock price dynamics given by

$$
d S_{t}=(r-q) S_{t} d t+\sigma_{l}\left(t, S_{t}\right) S_{t} d W_{t}
$$

where σ_{l} is now a function of the time and stock price. Let $C=C(K, T-t)$ be the price of a call option, given as a function of strike and time to maturity. For simplicity, let's assume $t=0$.
Show that the local volatility function σ_{l} then satisfies

$$
\sigma_{l}^{2}(T, K)=\frac{\frac{\partial C}{\partial T}+(r-q) K \frac{\partial C}{\partial K}+q C}{\frac{K^{2}}{2} \frac{\partial^{2} C}{\partial K^{2}}}
$$

You can assume that the probability density function $f(x, t)$ of the stock price at time t evaluated at $S_{t}=x$ satisfies the following equation (Kolmogorov forward equation):

$$
-\frac{\partial f}{\partial t}-(r-q) \frac{\partial x f}{\partial x}+\frac{1}{2} \frac{\partial^{2} \sigma(t, x)^{2} x^{2} f}{\partial x^{2}}=0
$$

with $p(x, t)=\delta_{S_{0}}(x)$ at $t=0$.
Hint. $C(K, T)=\exp (-r T) \mathrm{E}^{\mathbb{Q}}\left[\left(S_{T}-K\right)^{+}\right]=\exp (-r T) \int_{K}^{\infty}(x-K) f(x, T) d x$.
Differentiate this the expression twice with respect to K (obtaining $C_{K K}$, then with respect to $T\left(C_{K K T}\right)$. Use the given equation above and substitute and substitute parts of the appearing terms $\left(C_{K K}=\ldots\right)$. Integrate with respect to K twice and argue why the integration constants $c_{1}(T), c_{2}(T)$ will vanish.
Problem 2. Consider the following Black-Scholes equation for an Asian option:

$$
V_{t}+\frac{1}{2} \sigma^{2} S^{2} V_{S S}+S V_{I}+r S V_{S}-r V=0, \quad S>0, I>0, t \in(0, T)
$$

with a linear payoff, $V(S, I, T)=a+b S+c I$. Find a special solution by using the ansatz $V(S, I, t)=\alpha(t)+\beta(t) S+\gamma(t) I$ and determine $\alpha(t), \beta(t)$, and $\gamma(t)$.
Hint. Plug in and solve the ODEs.
Problem 3. Let $\left(B_{t}^{H}\right)_{t \geq 0}$ be a fractional Brwonian motion with Hurst parameter $H \in$ $(0,1)$. Let $X_{n}:=B_{n}^{H}-\bar{B}_{n-1}^{H}$ for $n \in \mathbb{N}$. Show that
(i) $\operatorname{Cov}\left(X_{n+1}^{H}, X_{1}^{H}\right)=\frac{1}{2}\left((n+1)^{2 H}+(n-1)^{2 H}-2 n^{2 H}\right)$.
(ii) $\operatorname{Cov}\left(X_{n+1}^{H}, X_{1}^{H}\right)$ behaves like $H(2 H-1) n^{2 H-2}$ as $n \rightarrow \infty$, i.e.

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{cov}\left(X_{n+1}^{H}, X_{1}^{H}\right)}{H(2 H-1) n^{2 H-2}}=1
$$

(iii) Looking at $\mathrm{E}\left[\left(B_{t_{1}}^{H}-B_{s_{1}}^{H}\right)\left(B_{t_{2}}^{H}-B_{s_{2}}^{H}\right)\right]$ for $t_{2}>s_{2}>t_{1}>s_{1}>0$, what happens for $H \in\left(0, \frac{1}{2}\right)$ and $H \in\left(\frac{1}{2}, 1\right)$ and how would you interpret this behaviour.

Hint. Consider the function $f(x)=\left((1-x)^{2 H}+(1+x)^{2 H}-2\right)$ (*cough* Taylor). Rescale it to $\frac{1}{2} n^{2 H} f\left(\frac{1}{n}\right)$.
Problem 4. Under the Heston model, the price of a call option can be written as

$$
\begin{aligned}
& C(t, S, v)=S f_{1}(t, S, v)-K \exp (-r(T-t)) f_{2}(t, S, v) \\
& f_{j}=\frac{1}{2}+\frac{1}{\pi} \int_{0}^{\infty} \operatorname{Re}\left(\frac{\psi_{j}(w, S, v, t) \exp (-i w \log (K))}{i w}\right) d w \\
& \psi_{j}=\exp \left(C_{j}((T-t), w)+v D_{j}(T-t, w)+i w \log (S)\right)
\end{aligned}
$$

The functions C_{1}, C_{2} and D_{1}, D_{2} are connected by the following equality:

$$
\begin{aligned}
& C_{1}(T-t, w)+v D_{1}(T-t, w)+i w \log (S)+r(T-t)+\log (S) \\
& =C_{2}(T-t, w-i)+v D_{2}(T-t, w-i)+i(w-i) \log (S)
\end{aligned}
$$

hence,

$$
\psi_{2}(w-i, S, v, t)=S \exp (r(T-t)) \psi_{1}(w, S, v, t)
$$

Compute "delta", $\frac{\partial C}{\partial S}$.
(!!!! Just calculate up to the substitution. I expected the last step to be easier. !!!!)
Hint. For $\Phi: \mathbb{R} \rightarrow \mathbb{C}, \operatorname{Re}\left(\frac{d}{d x} \Phi(x)\right)=\frac{d}{d x} \operatorname{Re}(\Phi(x))$.
Express $\frac{\partial f_{1}}{\partial S}$ in terms of ψ_{2}.
Problem 5. 1.) Simulate a Poisson process N with intensity $\lambda=1$. This is a process with $N_{t}-N s \sim \operatorname{Poi}(\lambda(t-s))$.
2.) Implement a compound Poisson process with normal jump distribution (this corresponds to ϕ on page 52 of your lecture notes.

Hint. You can either sample a Poisson process the obvious way, or by using that the jumps themselves arrive at increments of time Δt according to the exponential distribution $E(\lambda)$. Hence N_{t} can be simulated by sampling $E(\lambda)$ variables, until the time increments sum to t.

