Exercise sheet 5 for the course "Computational Finance"

Problem 1. We can derive an alternative binomial method by solving

$$
e^{r \Delta t}=p u+(1-p) d, \quad e^{\left(2 r+\sigma^{2}\right) \Delta t}=p u^{2}+(1-p) d^{2}, \quad p=\frac{1}{2}
$$

Show that

$$
d=e^{r \Delta t}\left(1-\sqrt{e^{\sigma^{2} \Delta t}-1}\right), \quad u=e^{r \Delta t}\left(1+\sqrt{e^{\sigma^{2} \Delta t}-1}\right) .
$$

Determine bounds on Δt which ensure that $d>0$ and $u>0$.
Problem 2. Let $s=\frac{1}{2}\left(e^{-r \Delta t}+e^{\left(r+\sigma^{2}\right) \Delta t}\right)$. Show that

$$
u=s+\sqrt{s^{2}-1}=e^{\sigma \sqrt{\Delta t}}+O\left(|\triangle t|^{3 / 2}\right) \quad \text { as } \Delta t \rightarrow 0 .
$$

Problem 3. Consider the equation (Cox-Ingersoll-Ross),

$$
d X_{t}=\kappa\left(\theta-X_{t}\right) d t+\sigma \sqrt{X_{t}} d W_{t} .
$$

Assume $2 \kappa \theta \geq \sigma^{2}$ and $X_{0}>0$.
We know that the anaytic solution remains positive with probability 1 (since it follows a chi-squared distribution).
1.) Show that the probability that the Euler discretization produces negative values is larger than 0 ,
2.) Show that for any SDE of the form

$$
X_{n+1}=X_{n}+a\left(t_{n}, X_{n}\right) \Delta t+b\left(t_{n}, X_{n}\right) \Delta W,
$$

the Euler discretization doesn't satisfy $\mathbb{P}\left(X_{n+1}>0 \mid X_{n}>0\right)=1$.

Problem 4. Let the usual Hermite polynomials be given by

$$
H_{n}(x):=\frac{(-1)^{n}}{n!} \exp \left(\frac{x^{2}}{2}\right) \frac{d^{n}}{d x^{n}} \exp \left(-\frac{x^{2}}{2}\right)
$$

Let us consider the time dependent version (which is equal to $t^{\frac{n}{2}} H\left(\frac{x}{\sqrt{t}}\right)$),

$$
H_{n}(t, x):=\frac{(-t)^{n}}{n!} \exp _{1}\left(\frac{x^{2}}{2 t}\right) \frac{d^{n}}{d x^{n}} \exp \left(-\frac{x^{2}}{2 t}\right)
$$

It is known (by messy calculations, which don't need to be done at this point) that,

$$
\begin{aligned}
& H_{n+1}=\frac{x}{n+1} H_{n}(t, x)+\frac{t}{n+1} H_{n-1}(t, x), \\
& \frac{d}{d t} H_{n}(t, x)=-\frac{1}{2} H_{n-2}(t, x) \\
& \frac{d}{d x} H_{n}(t, x)=H_{n-1}(t, x) .
\end{aligned}
$$

Show that

$$
d H_{n+1}(t, W)=H_{n}(t, W)
$$

Use this easy result to show

$$
H_{n}(t, W)=\int_{0}^{t} \int_{0}^{s_{n}} \cdots \int_{0}^{s_{2}} d W_{s_{1}} \ldots d W_{s_{n-1}} d W_{s_{n}}
$$

Further assume $f \in L^{2}(0, T)$ and $t \leq T$. Show that

$$
\int_{a}^{t} \int_{a}^{s_{n}} \cdots \int_{a}^{s_{2}} f\left(s_{1}\right) \ldots f\left(s_{n}\right) d W_{s_{1}} \ldots d W_{s_{n}}=H_{n}\left(\int_{a}^{t} f^{2}(s) d s, \int_{a}^{t} f(s) d W_{s}\right)
$$

Problem 5. Implement an Euler discretization for the following SDE:

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d W_{t}
$$

with $S_{0}=10, K=12, r=0.04, \sigma=0.4, T=2$. Calculate $\mathrm{E}\left[\exp (-r T)\left(K-S_{T}\right)^{+} 1_{\left(S_{t}<H \forall t \in[0, T]\right)}\right]$ for $H=13$. This corresponds to a European up\&out option, which becomes worthless if the price process crosses the barrier H.
The way to approximate this value is to simulate a large amount of paths, setting the payoff of the ones crossing over H to 0 , and averaging the payoffs at the exercise time T. The analytic solution yields the price $P=2.047849$.

Problem 6. Implement the Binomial model and value the European call with the following parameters: $S=50, r=0.1, K=50, \sigma=0.4, T=0.411$.
Compare the result to the one obtained by the explicit Black-Scholes formula.

