Exercise sheet 7 for the course "Computational Finance"

Problem 1. Let $u: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function and $h \in \mathbb{R}$. Show that

$$
\begin{aligned}
u_{x x}(x)= & \frac{1}{h^{2}}\left(-\frac{1}{12} u(x+2 h)+\frac{4}{3} u(x+h)-\frac{5}{2} u(x)+\frac{4}{3} u(x-h)-\frac{1}{12} u(x-2 h)\right) \\
& +O\left(h^{4}\right) .
\end{aligned}
$$

Problem 2. Let $u \in C^{2}(\mathbb{R})$ be a solution to $u_{x x}=f$, where $f \in C^{0}(\mathbb{R})$, and let w_{i} be an approximation of $u\left(x_{i}\right)$, where $x_{i}=i h$ and $i \in \mathbb{Z}, h>0$. By evaluating $u_{x x}=f$ at x_{i} and $x_{i \pm 1}$, determine the consistency error of the compact finite-difference scheme

$$
\frac{1}{h^{2}}\left(w_{i+1}-2 w_{i}+w_{i-1}\right)=\frac{1}{12}\left(f\left(x_{x+1}\right)+10 f\left(x_{i}\right)+f\left(x_{i-1}\right)\right) .
$$

Hint. If you are stuck, you are allowed to relax the assumptions on f to C^{2}.
Problem 3. Let $G=(-R, R)$, for an $R>0$, be an open set and let $\tau_{G}:=\inf \left\{t \geq 0 \mid X_{t} \in G^{c}\right\}$. This corresponds to the first time when the process hits G^{c}. Then the price of a knock-out barrier option with payoff $g(\exp (x))$ is given by

$$
V_{R}(t, x)=\mathrm{E}\left[\exp (-r(T-t)) g\left(\exp \left(X_{T}\right)\right) 1_{\left\{T<\tau_{G}\right\}} \mid X_{t}=x\right] .
$$

For an option without the barrier is assumed to be given by

$$
V(t, x)=\mathrm{E}\left[\exp (-r(T-t)) g\left(\exp \left(X_{T}\right)\right) \mid X_{t}=x\right]
$$

Show that there exist constants $C(t, \sigma), c_{1}, c_{2}>0$ such that

$$
\left|V(t, x)-V_{R}(t, x)\right| \leq C(T, \sigma) \exp \left(-c_{1} R+c_{2}|x|\right)
$$

We assume that there exist a $C>0, q \geq 1$ such that $g(s) \leq(s+1)^{q}$ for all $s \in \mathbb{R}$. Further let $d X_{t}=d \log \left(S_{t}\right)=\left(r-\frac{1}{2} \sigma^{2}\right) d t+\sigma d W_{t}$.
Hint. If you are trying to show

$$
E\left[g\left(\sup _{s \in[0, T]}\left|X_{s}\right|\right)\right]<\infty
$$

it suffices to show that

$$
E\left[g\left(\left|X_{T}\right|\right)\right]<\infty,
$$

if $g(x)$ is a nonnegative, continuous, submultiplicative function on $[0, \infty)$ which goes to ∞ for $x \rightarrow \infty$. You don't have to check that this is satisfied by our g.
Use the fact that the expectation is simply an integral with respect to a density $f_{T-t}(\cdot)$.
Remark 1. For the next problems, you can choose θ freely. (Explicit methods are easier to implement). Start with small space and time increments to test/understand the code you are using.

Problem 4. Consider the boundary value problem:

$$
\begin{aligned}
& -\frac{\partial^{2} u}{\partial x^{2}}=f \text { in } \Omega=(0,1) \\
& u(0)=u(1)=0
\end{aligned}
$$

Take an equidistant mesh on $(0,1)$.
Discretize the equation and simulate the solution for $f(x)=\sin (\pi x)$.

Problem 5. Consider the boundary value problem:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=0 \text { in } \Omega=(0,1) \times(0,1) \\
& u(x, 0)=\sin (\pi x) \\
& u(0, t)=u(1, t)=0
\end{aligned}
$$

Consider an equidistant mesh on $(0,1)$.
Discretize the equation and simulate the solution at point $T=1$.
Hint. Explicit methods are usually more intuitive to implement, since the solution process involves just 2 loops: 1 for the time and 1 for the space variable.
There is a stability condition attached to the problem, you choose $\Delta t \leq(\Delta x)^{2}$ to avoid it. (Courant-Friedrichs-Levy condition).

