ANALYSIS I FÜR TPH, VO (103.057)

Vorlesungsprüfung (Fr, 30.01.2015)

— keine elektronischen Hilfsmittel. keine schriftlichen Unterlagen. Arbeitszeit: 150 min. —

1. 2. 3. 4. 5. 6						
1. 2. 3. 4. 5. 6						
1. 2. 3. 4. 5. s						
1. 2. 3. 4. 5. 6						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
<u>1. 2. 3. 4. 5. g</u>						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
<u>1. 2. 3. 4. 5. 9</u>						
<u>1.</u> 2. 3. 4. 5.						
<u>1. 2. 3. 4. 5.</u>						
	gesami	5.	3. 4.	2. 3.	1.	

Tragen Sie bitte oben Ihre persönlichen Daten ein

 $Zur\ Beurteilung\ werden\ ausschließlich\ die\ in\ die\ entsprechenden\ oxed{K\"{astchen}}\ eingetragenen\ Antworten\ herangezogen.$

•	Aufgabe	1

$\mathbf{a})$	Bestimmen	Sie	den	Grenzwert	der	Folge	$\{a_n\},\$	$_{ m mit}$

$$a_n = \left(\frac{2n-1}{2n+3}\right)^n$$

Bitte präzise begründen.

_		

b) Entscheiden Sie, ob die Reihe

$$\sum_{n=0}^{\infty} \frac{1}{\cosh n}$$

konvergiert.

Falls dies zutrifft, geben Sie eine obere Schranke für den Wert der Reihe an.

[b): 2 P.]

$\mathbf{c})$	Für	welche	c	\in	\mathbb{R}	hat	der	Limes

$$\lim_{x \to 0} \frac{e^{2x} - 1 - cx}{r^2}$$

einen endlichen Wert?

Geben Sie auch seinen Wert in Abhängigkeit von \boldsymbol{c} an.

[c): 2 P.]

ihren Sie für die Funktio	$f(x) = \arctan(\ln x)$	eine möglichst komplette Kurvendi	skussion durch, plus
	Kandidaten für einen We	ndepunkt. Um genau zu überprüfen, o n $f''(x)$ genau an. Was folgern Sie? ¹	b es sich wirklich ur $[a)$: 5 P .]
		J (w) gomes on gomes on	[10]: 0 - 1]
g(x) := cot(f(x) -	f(1/x)(2) $(f ans a)$. Geben Sie für $g(x)$ eine möglichst ein	nfacha Darstallung a
$f(x) := \cot(f(x))$	(f(x))/2)	. Geben ble fur $g(x)$ eine mognenst en	
			[b): 1 P.]

¹Nicht direkt im Kästchen rechnen. Schreiben Sie nur Ihr fertiges Ergebnis für f''(x) an, und berechnen Sie f'''(x) nicht.

Berechnen Sie das Integral $\int arctan(1/x) dx$	[a): 3 I
Hinweis: $\int 1 dx = x$	
Stellen Sie den Wert des Integrals $\int x\sqrt{1+x} dx$ (oh:	ne Integrationskonstante) in Form eines Produ
J	
Stellen Sie den Wert des Integrals $ \int x \sqrt{1+x} \ dx $ (ohr zweier Funktionen dar.	ne Integrationskonstante) in Form eines Produ [b]: 3 P

• Aufgabe 4. Man entscheide, ob die folgenden Aussagen zutreffen bzw. ob sie wahr (w) oder falsch (f) sind, welchem Spezialfall sie zutreffen oder wie die Aussage ggf. zu modifizieren ist, damit sie zutrifft.	
Die Entscheidung für (\mathbf{w}) oder (\mathbf{f}) ist in jedem Fall mittels einer kurzen Argumentation (etwa ein Gegenbeispit durch explizites Zitat aus der Vorlesung bekannten Aussage zu $\underline{\underline{\mathbf{begründen}}}$.	iel) bzw.
Ggf. beantworte man auch die zusätzlich gestellten Fragen.	
a) Sei $a_n = \sum_{k=0}^n \binom{n}{k} q^k$ mit $ q < 1$. Dann ist die Reihe $\sum_{n=1}^{\infty} a_n$ konvergent. (w/f?) [a): 1 P.]	
b) Die differenzierbaren Funktionen $f(x)$ und $g(x)$ seien monoton wachsend.	
Dann ist auch $f(x) \cdot g(x)$ monoton wachsend konvergent. (w/f?) [b): 1.5 P.]	
c) Sie f differenzierbar auf $[a,b]$. Dann existiert $\xi \in [a,b]$ mit $\int_0^1 f(1-u)a + ub du = f'(\xi) \qquad [c): 1.5 F$	P.]
d) Die Reihe $\sum_{n=0}^{\infty} a_n$ sei absolut konvergent. Dann ist $\sum_{n=0}^{\infty} a_n x^n$ die Taylorreihe einer unendlich oft	
differenzierbaren Funktion. konvergent. (w/f?) Falls 'w': Was können Sie über den Konvergenzradius der Reihe aussagen? [d): $2 P.$]	

en zweiten Mittelwertsatz der Differentialrechnung.	[b): 1.5 P.]
nktion $h(x)$ an (in Abhängigkeit von den differenzierbaren Fu	nktionen f und g), so dass gil
$\xi = h'(x)$	[c): 1.5 P.]
e Begriffe <i>vunktweise Konveraenz</i> und <i>aleichmäßiae Ko</i>	envergenz einer Funktionen-
o Bostino paramone i i i i i i i i i i i i i i i i i i i	[d): 1.5 P.]
	L / J
	e Begriffe $punktweise$ $Konvergenz$ und $gleichmäßige$ Ko

 \bullet $\mathbf{Aufgabe}$ 5. Beantworten Sie die folgenden Fragen möglichst präzise.