LINEARE ALGEBRA FÜR TPH, UE (103.064)

- 1. Test (FR, 09.12.2022) (mit Lösung)
- Ein einfacher Taschenrechner ist erlaubt. —
- Unterlagen: eigene VO-Skripten und ein handgeschriebener A4-Schummelzettel. Arbeitszeit: 90 min. —

↑ FAMILIENNAME	$\uparrow Vorname$	$\uparrow Studium / Matr.Nr.$

1.	2.	3.	gesamt
Punkte			maximal 18

Tragen Sie bitte oben Ihre persönlichen Daten ein.

Als Grundlage für die Beurteilung bei der Ausarbeitung auf Papier dienen ausschließlich die in die entsprechenden $\boxed{\textit{K\"{a}stchen}}$ eingetragenen Antworten.

Machen Sie sich zunächst Notizen,

und tragen Sie dann erst Ihre Lösung samt Zusammenfassung des Lösungweges ein!

Die Größe der Kästchen ist auf die jeweilige Aufgabe abgestimmt.

• Aufgabe 1.

Das folgende lineare Gleichungssystem mit $\alpha \in \mathbb{R}$ ist gegeben.

$$(\alpha - 2)x_1 - 2x_2 + (2\alpha - 2)x_3 = 2\alpha - 2$$
$$3x_2 = 6$$
$$x_2 + (\alpha - 1)x_3 = \alpha + 1$$

a) (0.5 Punkte) Bestimmen Sie die Koeffizientenmatrix A und die Inhomogenität \boldsymbol{b} des linearen Gleichungssystems.

Die Koeffizientenmatrix und die Inhomogenität des linearen Gleichungssystems lauten wie folgt.

$$A = \begin{pmatrix} \alpha - 2 & -2 & 2\alpha - 2 \\ 0 & 3 & 0 \\ 0 & 1 & \alpha - 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 2\alpha - 2 \\ 6 \\ \alpha + 1 \end{pmatrix}$$

b) (3 Punkte) Unter Verwendung des Gauß-Algorithmus erhält man folgende reduzierte Matrixdarstellung der erweiterten Matrix

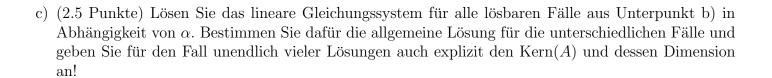
$$(A|\mathbf{b}) = \begin{pmatrix} \alpha - 2 & 0 & 0 & 4 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & \alpha - 1 & \alpha - 1 \end{pmatrix}.$$

Für welche Werte von α besitzt das Gleichungssystem keine Lösung, eine eindeutige Lösung und unendliche viele Lösungen? Begründen Sie Ihre Ergebnisse ausführlich!

Wir können folgende Fälle unterscheiden

- $\alpha = 2$: Rang(A) = 2, Rang $(A|\mathbf{b}) = 3 \to \text{Rang}(A) \neq \text{Rang}(A|\mathbf{b})$
- $\alpha = 1$: Rang $(A) = \text{Rang}(A|\mathbf{b}) = 2$
- $\alpha \in \mathbb{R} \backslash \{1, 2\}$: Rang $(A) = \text{Rang}(A|\boldsymbol{b}) = 3$.

Für den Fall $\alpha=2$ hat das Gleichungssystem keine Lösung, da Rang $(A)\neq \mathrm{Rang}(A|b)$. Für $\alpha=1$ ergibt sich eine eindimensionale Lösungsschar mit unendlich vielen Lösungen. Für alle anderen Fälle, also für $\alpha\in\mathbb{R}\setminus\{1,2\}$, existiert eine eindeutige Lösung abhängig von α .



• Fall: $\alpha=1$ Für diesen Fall gibt es unendlich viele Lösungen, also bestimmen wir die allgemeine Lösung, indem wir den Kern der Koeffizientenmatrix A und eine beliebige Partikulärlösung der Gleichung $A\boldsymbol{x}=\boldsymbol{b}$ bestimmen.

$$\begin{pmatrix} -1 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

Aus diesem Gleichungssystem folgt $x_1 = -4$ und $x_2 = 2$. Allgemein gilt, dass der Kern(A) die Lösung des homogenen Gleichungssystems, also von A $\mathbf{x} = \mathbf{0}$, ist. Weiters gilt, dass die Dimension des Kerns gleich der Anzahl der Unbekannten minus des Rangs von A ist, also dimKern(A) = n - Rang(A).

Wir wählen $x_3 = s$ und geben die allgemeine Lösung des Gleichungssystems an

$$\boldsymbol{x} = \begin{pmatrix} -4 \\ 2 \\ 0 \end{pmatrix} + s \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad s \in \mathbb{R},$$
 mit $\operatorname{Kern}(A) = s \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad s \in \mathbb{R}, \quad \operatorname{dim} \operatorname{Kern}(A) = 1.$

• Fall: $\alpha \in \mathbb{R} \setminus \{1, 2\}$ Für diesen Fall gibt es eine eindeutige Lösung und das bereits umgeformte Gleichungssystem sieht wie folgt aus

$$(\alpha - 2)x_1 = 4,$$

$$x_2 = 2,$$

$$(\alpha - 1)x_3 = \alpha - 1.$$

Da wir den Fall $\alpha \in \mathbb{R} \setminus \{1,2\}$ behandeln, darf die erste Zeile durch $\alpha-2$ und die dritte Zeile durch $\alpha-1$ dividiert werden, was die folgende eindeutige Lösung des Gleichungssystems ergibt

$$\boldsymbol{x} = \begin{pmatrix} \frac{4}{\alpha - 2} \\ 2 \\ 1 \end{pmatrix}, \quad \alpha \in \mathbb{R} \setminus \{1, 2\}.$$

• Aufgabe 2.

Sei $V = \mathbb{R}^{2 \times 2}$ der Vektorraum aller 2×2 Matrizen über \mathbb{R} .

a) (2.5 Punkte) Zeigen Sie, dass B gegeben durch

$$B = \left\{ \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix}, \begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix} \right\}$$

eine Basis von $\mathbb{R}^{2\times 2}$ darstellt. Argumentieren Sie ausführlich.

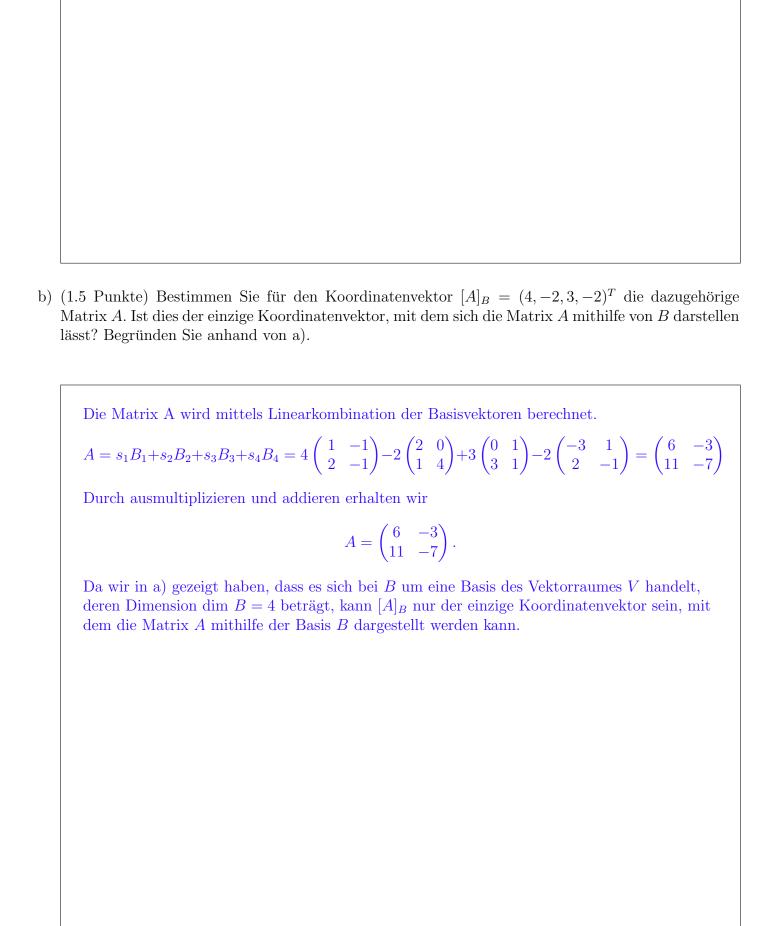
Die Linearkombination $s_1B_1 + s_2B_2 + s_3B_3 + s_4B_4 = 0$ ergibt

$$s_1 \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} + s_2 \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix} + s_3 \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix} + s_4 \begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

und somit die Matrizengleichung

$$\begin{pmatrix} I & II \\ III & IV \end{pmatrix} = \begin{pmatrix} s_1 + 2s_2 - 3s_4 & -s_1 + s_3 + s_4 \\ 2s_1 + s_2 + 3s_3 + 2s_4 & -s_1 + 4s_2 + s_3 - s_4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 $IV - II \Rightarrow s_4 = 2s_2$. Durch Einsetzen in Gleichung I erhält man $s_1 = 4s_2$. Aus weiterem Einsetzen der beiden Ergebnisse in Gleichung II ergibt sich $s_3 = 2s_2$. Letztendlich erhält man durch Einsetzen in Gleichung III $s_2 = 0$ und somit $s_1 = s_3 = s_4 = 0$. Da dim $\mathbb{R}^{2\times 2} = 4$ gilt und die 4 Basiselemente wie oben gezeigt linear unabhänging sind, kann mithilfe von $\{B_1, B_2, B_3, B_4\}$ jede beliebige Matrix aus dem $\mathbb{R}^{2\times 2}$ gebildet werden, weswegen B eine Basis bildet.



c) (0.5 Punkte) Wie viele Elemente besitzt eine Basis des Vektorraumes $W = \mathbb{R}^{4\times5}$?

Die Dimension von W lautet dim W=20, somit können in W genau 4*5=20 Basiselemente eine Basis bilden.

(d) (1.5 Punkte) Begründen Sie, warum die Menge der (2×2) -Matrizen mit der üblichen Addition $(\mathbb{R}^{2 \times 2}, +)$ eine Gruppe bildet. Ist diese kommutativ?

Seien
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}, \quad C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}.$$

(i) Assoziativität: $\forall A, B, C \in \mathbb{R}^{2 \times 2}$: (A + B) + C = A + (B + C)

$$(A+B)+C = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} + \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$= \begin{pmatrix} (a_{11}+b_{11})+c_{11} & (a_{12}+b_{12})+c_{12} \\ (a_{21}+b_{21})+c_{21} & (a_{22}+b_{22})+c_{22} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}+(b_{11}+c_{11}) & a_{12}+(b_{12}+c_{12}) \\ a_{21}+(b_{21}+c_{21}) & a_{22}+(b_{22}+c_{22}) \end{pmatrix}$$

$$= A+(B+C)$$

(ii) neutrales Element: $\exists E \in \mathbb{R}^{2\times 2}, \forall A \in \mathbb{R}^{2\times 2} \colon A + E = A$ Sei $E = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, dann gilt

$$A + E = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = A.$$

(iii) inverses Element: $\forall A \in \mathbb{R}^{2 \times 2}, \exists A^{-1} \in \mathbb{R}^{2 \times 2} \colon A + A^{-1} = E$ Sei $A^{-1} = -A$, dann gilt

$$A + A^{-1} = A + (-A) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

(iv) Kommutativität: Ja, da die Addition komponentenweise erfolgt und die Addition reeller Zahlen kommutativ ist, ist auch die Addition von Matizen kommutativ.

• Aufgabe 3.

a) (2 Punkte) Gegeben seien zwei Unterräume des Vektorraums $V = \mathbb{R}^5$,

$$U = \left\{ \boldsymbol{x} \in \mathbb{R}^5 : x_1 - x_3 - x_4 - x_5 = 0 \right\}$$

$$W = \left\{ \boldsymbol{x} \in \mathbb{R}^5 : x_3 + x_4 = 0, \quad x_1 - 2x_2 = 0, \quad 3x_1 - 2x_5 = 0 \right\}$$

Finden Sie jeweils eine Basis sowie die Dimension von U und W.

Wir fangen mit U an. Da es nur durch eine Gleichung definiert ist, können wir sogleich 4 Elemente durch Konstanten ausdrücken. Wir wählen $x_3 = \alpha$, $x_4 = \beta$, $x_5 = \gamma$, und für das nicht vorkommende $x_2 = \delta$. Damit ist $x_1 = \alpha + \beta + \gamma$, und wir können den Vektor $\mathbf{u} \in U$ schreiben als

$$\boldsymbol{u} = \begin{pmatrix} \alpha + \beta + \gamma \\ \delta \\ \alpha \\ \beta \\ \gamma \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \delta \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Die Basis und die Dimension lauten dann

$$B_{U} = \left\{ \begin{pmatrix} 1\\0\\1\\0\\0 \end{pmatrix}; \begin{pmatrix} 1\\0\\0\\1\\0 \end{pmatrix}; \begin{pmatrix} 1\\0\\0\\0\\1 \end{pmatrix}; \begin{pmatrix} 0\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0\\0 \end{pmatrix} \right\}, \quad \dim U = 4.$$

Da x_3 und x_4 nur in der ersten Gleichung vorkommen, setzen wir $x_3 = \alpha$. Für die letzten beiden Gleichungen wählen wir $x_2 = \beta$ und erhalten $x_1 = 2\beta$, $x_5 = 3\beta$. Wir schreiben wieder einen allgemeinen Vektor an

$$\boldsymbol{w} = \begin{pmatrix} 2\beta \\ \beta \\ \alpha \\ -\alpha \\ 3\beta \end{pmatrix} = \alpha \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 3 \end{pmatrix}.$$

Die Basis und die Dimension sind somit

$$B_W = \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}; \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 3 \end{pmatrix} \right\}, \quad \dim W = 2.$$

b) (1,5 Punkte) Finden Sie nun eine Basis für den Durchschnitt der zwei Unterräume $U\cap W$ und bestimmen Sie die Dimension.

Ein Vektor aus dem Durchschnitt zweier Unterräume erfüllt gleichzeitig die Bedingungen beider Räume. Wir fassen also aus a) zusammen

$$U \cap W = \{ \boldsymbol{x} \in \mathbb{R}^5 : x_1 - x_3 - x_4 - x_5 = 0, \quad x_3 + x_4 = 0, \quad x_1 - 2x_2 = 0, \quad 3x_1 - 2x_5 = 0 \}.$$

Wir haben somit das Gleichungssystem

Aufgrund der zweiten Gleichung folgt, dass $-x_3 - x_4 = 0$. Wenn wir das in die erste Gleichung einsetzen und mit der letzen und vorletzten vergleichen, können wir schließen

$$\frac{2}{3}x_5 - x_5 = 0 \implies x_1 = 0 \implies x_2 = 0.$$

Es bleibt nur die zweite Gleichung. Wir wähen $x_3 = \alpha$. Dadurch ist ein Vektor $\boldsymbol{w} \in U \cap W$ gegeben als

$$\boldsymbol{w} = \alpha \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}.$$

Die Basis besitzt somit nur ein Element

$$B_{U\cap W} = \left\{ \begin{pmatrix} 0\\0\\1\\-1\\0 \end{pmatrix} \right\}, \quad \dim(U\cap W) = 1.$$

c) (2,5 Punkte) Die Unterräume U und W schneiden sich auf einer Geraden in der x_3 - x_4 -Ebene. Ermitteln Sie die Dimension für die Summe U+W mit dem Dimensionssatz für Unterräume, und überprüfen Sie Ihr Ergebnis, indem Sie auch für U+W eine passende Basis finden.

Mit dem Hinweis zum Schnittpunkt der zwei Unterräume oder mit dem Ergebnis von Aufgabe b) wissen wir, dass dim $(U \cap W) = 1$. Wir setzen die Ergebisse aus a) in den Dimensionssatz ein

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W) = 4 + 2 - 1 = 5.$$

Die Summe U+W wird von der Linearkombination der Basen aus a) aufgespannt

$$U + W = \mathcal{L}(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{w}_1, \mathbf{w}_2).$$

Da sowohl U als auch W Unterräume von \mathbb{R}^5 sind, können diese 6 Vektoren nicht linear unabhängig sein.

Wir überprüfen zuerst den Basisvektor $\boldsymbol{w}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}$ auf lineare Abhängigkeit mit den

Basisvektoren von U. Hierbei handelt es sich um einen Basisvektor des Durchschnittes $U \cap W$. Dieser kann also mit der Basis von U konstruiert werden und ist somit linear abhängig bezüglich dieser Basis. Eine kurze Rechnung führt auf das gleiche Ergebnis.

Wir betrachten folglich den Vektor $\boldsymbol{w}_2 = \begin{pmatrix} 2\\1\\0\\0\\3 \end{pmatrix}$. Damit die Linearkombination 0 ergibt, muss gelten

 $\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \lambda_3 \mathbf{u}_3 + \lambda_4 \mathbf{u}_4 + \lambda_5 \mathbf{w}_2 = 0.$

Das ergibt das Gleichungssystem

$$\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 = 0$$
 $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 = 0$
 $\lambda_1 + \lambda_2 + \lambda_3 + 3\lambda_5 = 0$

Daraus folgt, dass $\lambda_1=0$ und $\lambda_2=0$. In die erste Gleichung eingesetzt, ergibt das $\lambda_3+3\lambda_5=0$. Verglichen mit der letzten und zweiten Gleichung, können wir schließen, dass $\lambda_5=\lambda_3=\lambda_4=0$.

Da alle Koeffizienten $\lambda_i=0$ sind, sind die Vektoren linear unabhängig und die Basis für U+W lautet

$$B_{U+W} = \left\{ \begin{pmatrix} 1\\0\\1\\0\\0 \end{pmatrix}; \begin{pmatrix} 1\\0\\0\\1\\0 \end{pmatrix}; \begin{pmatrix} 1\\0\\0\\0\\1 \end{pmatrix}; \begin{pmatrix} 0\\1\\0\\0\\0\\0 \end{pmatrix}; \begin{pmatrix} 2\\1\\0\\0\\0\\3 \end{pmatrix} \right\}, \quad \dim(U+W) = 5.$$

Aus dem Dimensionssatz ergibt sich

$$5 = 4 + 2 - 1$$
.