ANALYSIS II FÜR TPH, VO (103.087)

Vorlesungsprüfung (Fr, 30.01.2015)

— keine elektronischen Hilfsmittel. keine schriftlichen Unterlagen. Arbeitszeit: 150 min. —

1. 2. 3. 4. 5. 6						
1. 2. 3. 4. 5. 6						
1. 2. 3. 4. 5. s						
1. 2. 3. 4. 5. 6						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
<u>1. 2. 3. 4. 5. g</u>						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
1. 2. 3. 4. 5. g						
<u>1. 2. 3. 4. 5. 9</u>						
<u>1.</u> 2. 3. 4. 5.						
<u>1. 2. 3. 4. 5.</u>						
	gesami	<u>5.</u>	3. 4.	2. 3.	1.	

Tragen Sie bitte oben Ihre persönlichen Daten ein

Zur Beurteilung werden ausschließlich die in die entsprechenden Kästchen eingetragenen Antworten herangezogen.

Aufgabe 1.		1		
Durch die Gleichung	$x^4 + y^4 + z^4 = 1$	ist eine geschlossene Fläche	im \mathbb{R}^3 definiert.	[a]: 1 P.
Geben Sie einen <i>Nor</i>	malvektor an die Fla	iche in einem beliebigen Punk	et (x, y, z) auf der	Fläche an.
		n Lösung diejenigen Punkte de 1) <i>maximalen Abstand</i> hab		
system nicht lösen.)				[b): 1.5 P.]
Sei C die Kurve, die a	ls Schnitt der Fläche	aus a) mit der durch die Glei	chung $x = y^3$	definierten F
		$m{r}$ an C in dem Kurvenpunkt	(x, y, z) = (0, 0, 1)	
Hinweis: nicht gleich	ins Kasterl rechnen!			[c): 3.5 P.

	$f \in (0,\pi)$. Schreib	en Sie die Reihe in	der Form $\sum_{n=0}$	an.): 3 P. _j
$Zusatz frage: % \label{frage} % \label{frage}% % \label{frage}%$	Wie sieht der p	ounktweise Limes d	er Fourierreihe für	$x \in [-\pi, \pi]$ a	us?	
					<u> </u>	
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{(k+\frac{1}{2})^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{\left(k + \frac{1}{2}\right)^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{(k+\frac{1}{2})^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{\left(k + \frac{1}{2}\right)^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{\left(k + \frac{1}{2}\right)^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{(k+\frac{1}{2})^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{\left(k + \frac{1}{2}\right)^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{\left(k + \frac{1}{2}\right)^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{(k+\frac{1}{2})^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{\left(k + \frac{1}{2}\right)^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{(k+\frac{1}{2})^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{\left(k + \frac{1}{2}\right)^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{(k+\frac{1}{2})^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{\left(k + \frac{1}{2}\right)^2}$	[b):
Berechnen Sie	mit Hilfe des Erg	gebnisses aus a) de	n Wert der konve	rgenten Reihe	$\sum_{k=0}^{\infty} \frac{1}{(k+\frac{1}{2})^2}$	[b):

•	Aufgabe	3

a) Berechnen Sie den Wert des uneigentlichen Integrals	$\int_{-\infty}^{0} \frac{x^2}{1 + 4x^2(1 + x^2)} dx$	[a): 5 P.]
mittels einer Technik aus der komplexen Funktionent	theorie. ¹	

			1
sestimmen Sie den Wert des komplex	xen Kurvenintegrals	$\oint_{\Gamma} z^{-1} \cosh z dz$, wobei Γ eine geschlossene
		J_{Γ}	
ezeichnet mit 0 im Inneren von Γ .			[b): 1 P.]

¹Schreiben Sie nicht alle Detailrechnungen ins Kasterl (dafür ist nicht genug Platz), sondern nur die wesentlichen Argumentation und die relevanten Zwischenergebnisse.

immen Sie die $Hesse-Matrix$ des Skalarfeldes $f: \mathbb{R}^n \to \mathbb{R}$, definiert durch $f(x)$ res Produkt). Dabei ist $y \in \mathbb{R}^n$ ein fest gewählter Vektor. I $\in \mathbb{R}^{n \times n}$ eine quadratische Matrix. Was versteht man unter der $Matrix$ norm $f(x)$ eine ganze (d.h. auf ganz \mathbb{C} differenzierbare) komplexe Funktion. Weiters se Parameterdarstellung $z(t)$, $a \le t \le b$. The size x is x in	(Abbildungsnorm) voi $[c) \colon 1.5 \ P$ ei $C \subset \mathbb{C}$ eine glatte K
res Produkt). Dabei ist $y \in \mathbb{R}^n$ ein fest gewählter Vektor. $A \in \mathbb{R}^{n \times n}$ eine quadratische Matrix. Was versteht man unter der A A A A A A eine quadratische Matrix. Was versteht man unter der A	(Abbildungsnorm) voi $[c) \colon 1.5 \ P$ ei $C \subset \mathbb{C}$ eine glatte K
res Produkt). Dabei ist $y \in \mathbb{R}^n$ ein fest gewählter Vektor. $A \in \mathbb{R}^{n \times n}$ eine quadratische Matrix. Was versteht man unter der A A A A A A eine quadratische Matrix. Was versteht man unter der A	(Abbildungsnorm) voi $[c) \colon 1.5 \ P$ ei $C \subset \mathbb{C}$ eine glatte K
res Produkt). Dabei ist $y \in \mathbb{R}^n$ ein fest gewählter Vektor. $A \in \mathbb{R}^{n \times n}$ eine quadratische Matrix. Was versteht man unter der A A A A A A eine quadratische Matrix. Was versteht man unter der A	(Abbildungsnorm) voi $[c) \colon 1.5 \ P$ ei $C \subset \mathbb{C}$ eine glatte K
res Produkt). Dabei ist $y \in \mathbb{R}^n$ ein fest gewählter Vektor. $A \in \mathbb{R}^{n \times n}$ eine quadratische Matrix. Was versteht man unter der A A A A A A eine quadratische Matrix. Was versteht man unter der A	(Abbildungsnorm) voi $[c) \colon 1.5 \ P$ ei $C \subset \mathbb{C}$ eine glatte K
$f(z)$ eine ganze (d.h. auf ganz $\mathbb C$ differenzierbare) komplexe Funktion. Weiters se Parameterdarstellung $z(t), a \leq t \leq b$. Seen Sie zwei Methoden zur Berechnung des komplexen Kurvenintegraldurch Zurückführung auf zwei reelle Integrale $\int \dots dt$, mittels des Begriffes der Stammfunktion.	$[c)$: 1.5 P ei $C\subset \mathbb{C}$ eine glatte K
$f(z)$ eine ganze (d.h. auf ganz $\mathbb C$ differenzierbare) komplexe Funktion. Weiters se Parameterdarstellung $z(t), a \leq t \leq b$. Seen Sie zwei Methoden zur Berechnung des komplexen Kurvenintegraldurch Zurückführung auf zwei reelle Integrale $\int \dots dt$, mittels des Begriffes der Stammfunktion.	$[c)$: 1.5 P ei $C\subset \mathbb{C}$ eine glatte K
$f(z)$ eine ganze (d.h. auf ganz $\mathbb C$ differenzierbare) komplexe Funktion. Weiters se Parameterdarstellung $z(t), a \leq t \leq b$. Seen Sie zwei Methoden zur Berechnung des komplexen Kurvenintegraldurch Zurückführung auf zwei reelle Integrale $\int \dots dt$, mittels des Begriffes der Stammfunktion.	$[c)$: 1.5 P ei $C\subset \mathbb{C}$ eine glatte K
$f(z)$ eine ganze (d.h. auf ganz $\mathbb C$ differenzierbare) komplexe Funktion. Weiters se Parameterdarstellung $z(t), a \leq t \leq b$. Seen Sie zwei Methoden zur Berechnung des komplexen Kurvenintegraldurch Zurückführung auf zwei reelle Integrale $\int \dots dt$, mittels des Begriffes der Stammfunktion.	$[c)$: 1.5 P ei $C\subset \mathbb{C}$ eine glatte K
$f(z)$ eine ganze (d.h. auf ganz $\mathbb C$ differenzierbare) komplexe Funktion. Weiters se Parameterdarstellung $z(t), a \leq t \leq b$. Seen Sie zwei Methoden zur Berechnung des komplexen Kurvenintegraldurch Zurückführung auf zwei reelle Integrale $\int \dots dt$, mittels des Begriffes der Stammfunktion.	$[c)$: 1.5 P ei $C\subset \mathbb{C}$ eine glatte K
Parameterdarstellung $z(t), a \leq t \leq b$. ben Sie zwei Methoden zur Berechnung des komplexen Kurvenintegraldurch Zurückführung auf zwei reelle Integrale $\int \dots dt$, mittels des Begriffes der Stammfunktion.	ei $C\subset \mathbb{C}$ eine glatte K
Parameterdarstellung $z(t), a \leq t \leq b$. ben Sie zwei Methoden zur Berechnung des komplexen Kurvenintegraldurch Zurückführung auf zwei reelle Integrale $\int \dots dt$, mittels des Begriffes der Stammfunktion.	h
Parameterdarstellung $z(t), a \leq t \leq b$. ben Sie zwei Methoden zur Berechnung des komplexen Kurvenintegraldurch Zurückführung auf zwei reelle Integrale $\int \dots dt$, mittels des Begriffes der Stammfunktion.	h
Parameterdarstellung $z(t), a \leq t \leq b$. ben Sie zwei Methoden zur Berechnung des komplexen Kurvenintegraldurch Zurückführung auf zwei reelle Integrale $\int \dots dt$, mittels des Begriffes der Stammfunktion.	h
Parameterdarstellung $z(t), a \leq t \leq b$. ben Sie zwei Methoden zur Berechnung des komplexen Kurvenintegraldurch Zurückführung auf zwei reelle Integrale $\int \dots dt$, mittels des Begriffes der Stammfunktion.	h
Parameterdarstellung $z(t), a \leq t \leq b$. ben Sie zwei Methoden zur Berechnung des komplexen Kurvenintegraldurch Zurückführung auf zwei reelle Integrale $\int \dots dt$, mittels des Begriffes der Stammfunktion.	h
$egin{aligned} extbf{durch Zur\"uckf\"uhrung auf zwei reelle Integrale} & \int \ldots dt, \ extbf{mittels des Begriffes der Stammfunktion.} \end{aligned}$	b
$egin{aligned} extbf{durch Zur\"uckf\"uhrung auf zwei reelle Integrale} & \int \ldots dt, \ extbf{mittels des Begriffes der Stammfunktion.} \end{aligned}$	$ds \int_{a} f(z(t)) z'(t) dt an$
	a
	[d): 2 P.

	Unter welchen Voraussetzungen ist diese symmetrische?	[a]: 1.5 P.,
[]	Formulieren Sie den Mittelwertsatz für stetig differenzierbare Skalarfelder $f: \mathbb{R}^n \to \mathbb{R}$.	[b): 1.5 P.,
		7
	ei H ein reeller Hilbertraum mit innerem Produkt $\langle \cdot, \cdot \rangle$, und $u \in H$ ein festes Element von H Zeigen Sie: Durch $f(x) := \langle u, x \rangle$ ist ein stetiges lineares Funktional auf H definiert.	
Γ		
V	Vie lauten die <i>Cauchy-Riemann'schen Differentialgleichungen</i> und was ist ihre Bedeu	tung? [d): 1.
	Vie lauten die <i>Cauchy-Riemann'schen Differentialgleichungen</i> und was ist ihre Bedeu	tung? [d): 1.
	Vie lauten die <i>Cauchy-Riemann'schen Differentialgleichungen</i> und was ist ihre Bedeu	tung? [d): 1.
	Vie lauten die <i>Cauchy-Riemann'schen Differentialgleichungen</i> und was ist ihre Bedeu	tung? [d): 1.
V	Vie lauten die <i>Cauchy-Riemann'schen Differentialgleichungen</i> und was ist ihre Bedeu	tung? [d): 1.
V	Vie lauten die <i>Cauchy-Riemann'schen Differentialgleichungen</i> und was ist ihre Bedeu	tung? [d): 1.
V	Vie lauten die <i>Cauchy-Riemann'schen Differentialgleichungen</i> und was ist ihre Bedeu	tung? [d): 1.
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Vie lauten die <i>Cauchy-Riemann'schen Differentialgleichungen</i> und was ist ihre Bedeu	tung? [d): 1.
	Wie lauten die <i>Cauchy-Riemann'schen Differentialgleichungen</i> und was ist ihre Bedeu	tung? [d): 1.
	Wie lauten die Cauchy-Riemann'schen Differentialgleichungen und was ist ihre Bedeu	tung? [d): 1.
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Vie lauten die <i>Cauchy-Riemann'schen Differentialgleichungen</i> und was ist ihre Bedeu	tung? [d): 1.

• Aufgabe 5. Beantworten Sie die folgenden Fragen möglichst Präzise.