Pflichtbeispiel: Gegeben sei die Differentialgleichung 2. Ordnung

$$4t^2\ddot{x} - t\dot{x} + x = 0.$$

Eine Lösung der Differentialgleichung ist mit $x_1(t) = t$ bekannt. Bestimmen Sie mit der Methode der Variation der Konstanten eine zweite, linear unabhängige Lösung der Differentialgleichung.

1. Sei t>0. Weisen Sie nach, dass $y_1(t)=C_1$ und $y_2(t)=C_2\ln(t)$ Lösungen der Differentialgleichung

$$t^2y'' + ty' = 0$$

sind. Zeigen Sie weiters die lineare Unabhängigkeit von $\{y_1, y_2\}$.

2. Gegeben ist die Differentialgleichung

$$\ddot{x}\cos t + x\cos t = 1.$$

- (a) Geben Sie ein reelles Fundamentalsystem $\{x_1(t), x_2(t)\}$ an.
- (b) Berechnen Sie eine partikuläre Lösung $x_p(t)$.
- 3. Lösen Sie die Eulersche Differentialgleichung

$$4t^2\ddot{x} - t\dot{x} + x = 2t^4.$$

mit den Anfangsbedingungen x(1) = 0 und $\dot{x}(1) = 0$.

4. Betrachten Sie für y = y(t) mit t > 0 die Differentialgleichung

$$\ddot{y} + \frac{3}{t}\dot{y} + \frac{y}{t^2} = \frac{\ln t}{t^2}.$$

Überprüfen Sie ob es sich um eine Euler-Differentialgleichung handelt und lösen Sie diese.

5. Gegeben sei die Differentialgleichung

$$(4t+1)\ddot{y} + (8t-2)\dot{y} + (-12t-15)y = e^t$$

sowie eine homogene Lösung $y_1(t) = e^{-3t}$. Berechnen Sie mit Hilfe von $y_1(t)$ eine zweite, linear unabhängige Lösung der homogenen Differentialgleichung. Berechnen Sie weiters die Partikulärlösung und geben Sie die allgemeine Lösung an.

6. Betrachten Sie für $x = x(t), t \in \mathbb{R}^+$, die Differentialgleichung

$$t^3\ddot{x} + t^2\dot{x} - 4tx = 0.$$

(a) Berechnen Sie eine Lösung der Differentialgleichung mit Hilfe des Ansatzes

$$x_1(t) = t^{\alpha},$$

 $mit \ \alpha > 0.$

- (b) Berechnen Sie eine weitere, linear unabhängige Lösung x_2 unter Zuhilfenahme der Variation der Konstanten und geben Sie die allgemeine Lösung der Differentialgleichung an.
- (c) Bestimmen Sie die Lösung des Anfangswertproblems für x(1) = 1 und $\dot{x}(1) = 1$.

Lösungen

- 1. Ja, y_1 und y_2 sind linear unabhängige Lösungen.
- 2. (a) $\{\cos t, \sin t\}$, (b) $\ln(\cos t)\cos t + t\sin t$

3.
$$x(t) = \frac{8}{45} \sqrt[4]{t} - \frac{2}{9}t + \frac{2}{45}t^4$$

4.
$$y(t) = c_1 \frac{1}{t} + c_2 \frac{1}{t} \ln t + \ln t - 2$$

5.
$$y(t) = c_1 e^{-3t} + c_2 t e^t - \frac{1}{16} e^t$$

6.
$$x(t) = \frac{3}{4}t^2 + \frac{1}{4}\frac{1}{t^2}$$