ANALYSIS 2 TM, SS 13, TEST 4: AUSARBEITUNG

Inhaltsverzeichnis

1 A) und B)	2
2 A) und B)	3

1 A) und B)

Angabe: : Man gebe alle reellen α bzw. β an, für die f(x,y) ein Gradientenfeld im \mathbb{R}^2 ist. Dabei ist

(A)
$$f(x,y) = (\alpha \sin y + 2xy, (1-\alpha)x \cos y + x^2 - \sin y)^t$$
 bzw.

(B)
$$f(x,y) = (e^y + y, xe^y + \beta x + y)^t$$
.

LÖSUNG:

Beh 1:: Ist f Gradientenfeld, so muß $\alpha = \frac{1}{2}$ bzw. $\beta = 1$ gelten

BW.: Das Feld ist C^2 somit muß, falls $f=(P,Q)^t$ gilt, die Integrabilitätsbedingung $P_y = Q_x$ gelten. Im Falle **A)** führt dies auf

$$\alpha \cos y + 2x = (1 - \alpha) \cos y + 2x$$

also $\alpha = \frac{1}{2}$, im Falle **B** auf

$$e^y + 1 = e^y + \beta + 1$$

also $\beta = 1$.

Beh 2:: Für die angegebenen Werte von α/β liegt ein Gradientenfeld vor.

BW.: Da f überall im \mathbb{R}^2 definiert ist, und \mathbb{R}^2 einfach zusammenhängend ist, sind die Integrabilitätsbedingungen auch hinreichend.

Beh 3:: Es ergibt sich als Wert von $\int_{\gamma} f(z) dz$ der Wert **A)** $\frac{a \sin b}{2} + a^2b +$ $\cos b - 1 \ bzw. \ \mathbf{B}) \ ae^b + ab + \frac{b^2}{2}.$

BW.: Wegeunabhängigkeit erlaubt es das Kurvenintegral $\int_{\gamma}f(z)\,dz$ über einen Hakenweg von (0,0) über (x,0) nach (x,y) zu erstrecken:

$$\int_0^a P(\xi,0) d\xi + \int_0^b Q(a,\eta) d\eta$$

A)
$$\int_0^a 0 \, d\xi + \int_0^b (\frac{a}{2} \cos \eta + a^2 - \sin \eta) \, d\eta = \dots = \frac{a \sin b}{2} + a^2 b + \cos b - 1.$$

B) $\int_0^a 1 \, d\xi + \int_0^b (ae^{\eta} + a + \eta) \, d\eta = \dots = ae^b + ab + \frac{b^2}{2}.$

B)
$$\int_0^a 1 \, d\xi + \int_0^b (ae^{\eta} + a + \eta) \, d\eta = \dots = ae^b + ab + \frac{b^2}{2}$$
.

Alternative: Man berechnet einen Kandidaten V(x,y) für ein Potential, zeigt, dass dessen Gradient f(x,y) ist und bestimmt V(a,b)-V(0,0) als Wert des Kurvenintegrals.

2 A) und B)

ANGABE: Es seien X und Y topologische Räume. Dann ist die Abbildung

- **A)** $f: X \times Y \to Y \times X \times Y$, gegeben durch f(x,y) := (y,x,y)
- **B)** $f: X \times Y \to Y \times X \times X$, gegeben durch f(x, y) := (y, x, x) stetig.

LÖSUNG: Laut Vorlesung ist eine Abbildung $f:A\to\prod_i Y_i$ genau dann stetig, wenn alle $p_i\circ f$ stetig sind. Es ist $A:=X\times Y$ und es gibt drei Projektionen p_i . Weiters weiß man, dass die Projektionen $p_X:X\times Y\to X$ und $p_Y:X\times Y\to Y$ jeweils stetig sind. Es ergeben sich nun $p_1\circ f=p_Y,\ p_2\circ f=p_X$ und $p_3\circ f$ ist in **A)** gleich der Abbildung p_Y bzw. in **B)** gleich p_X . Da somit alle $p_i\circ f$ stetig sind, ist es auch f.