Analysis II Übung - Blatt 8, für den 20. 05. 2014

- 57. Sei $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$ und $\mathbb{C}^+ := \{z \in \mathbb{C} : \Im(z) > 0\}.$
 - (a) Zeigen Sie: Es gibt keine stetige Funktion $f: \mathbb{C}^* \to \mathbb{C}^*$ mit $(f(z))^2 = z$ für alle $z \in \mathbb{C}^*$.
 - (b) Bestimmen Sie das Bild $f(\mathbb{C}^+)$ für $f(z) := z^2$ und skizzieren Sie die Bildkurven der achsenparallelen Geraden, d.h. für $\Re(z)$ bzw. $\Im(z)$ konstant.
- 58. Untersuchen Sie, ob folgende aus dem reellen bekannte Funktionen eine holomorphe Fortsetzung auf D besitzen:
 - (a) $f(x) := \sin(x)$ für $D = \mathbb{C}$,
 - (b) $f(x) := \sqrt{x} \text{ für } D = \mathbb{C} \setminus \{0\},$
 - (c) $f(x) := |x| \text{ für } D = \mathbb{C} \setminus \{0\},$
 - (d) $f(x) := \frac{1}{x}$ für $D = \mathbb{C} \setminus \{0\}$.
- 59. Sei $G \subset \mathbb{C}$ ein konvexes Gebiet und $u: G \to \mathbb{R}$ eine harmonische Funktion. Zeigen Sie: Dann existiert eine harmonische Funktion $v: G \to \mathbb{R}$, sodass die Funktion $f:=u+iv: G \to \mathbb{C}$ holomorph ist. v ist bis auf eine additive reelle Konstante eindeutig bestimmt.
- 60. Sei $G \subset \mathbb{C}$ ein Gebiet und $f: G \to \mathbb{C}$ holomorph. Beweisen Sie, dass die Funktion

$$g(z):=\overline{f(\overline{z})}, \qquad z\in G^*:=\{z\in\mathbb{C},\ \overline{z}\in G\}$$

holomorph auf G^* ist.

- 61. Es sei $G \subset \mathbb{C}$ ein Gebiet, $f: G \to \mathbb{C}$ holomorph: Zeigen Sie, dass jeweils eine der folgenden Bedingungen ausreicht, damit f konstant auf G ist.
 - (a) $\Re(f)$ ist konstant auf G,
 - (b) $\Im(f)$ ist konstant auf G,
 - (c) |f| ist konstant auf G,
 - (d) Arg(f) ist konstant auf G.
- 62. Sei f eine nicht konstante, ganze Funktion. Dann ist $f(\mathbb{C}):=\{f(z)\in\mathbb{C},z\in\mathbb{C}\}$ dicht in \mathbb{C} .
- 63. Sei r>0 und C_r der positiv durchlaufende Kreis $\{z\in\mathbb{C}:|z|=r\}$. Berechnen Sie für $r\neq 1$
 - (a) $\int_{C_r} \frac{(2+i)z^2 + (4+3i)z + 3+i}{z^3 + (2-i)z^2 + (1-2i)z i} dz$ und
 - (b) $\int_{C_r} \frac{1}{(z-a)^2(z-b)^m} dz$ mit |a| < r < |b| und $m \in \mathbb{N}$.

- 64. Berechnen Sie die Residuen $\mathrm{Res}_{z_0}f$ für

 - (a) $f(z) := \frac{\sin(z)}{z^4}$ mit $z_0 := 0$ und (b) $f(z) := \frac{1}{z^{n-1}}$ mit $z_0 := 1$ und $n \in \mathbb{N}$.