Übungsaufgaben zur Analysis 2 für Informatik

Blatt 2

- 7. Man finde alle stationären Punkte der Funktion $f(x,y,z) = 2x^2 3xz^2 + y^3 + 3z^2 3y + 3$ und bestimme daraus die relativen Extrema.
- 8. Die Herstellung eines Produkts P unter Verwendung zweier Produktionsfaktoren A und B werde durch die Produktionsfunktion

$$y = f(x_1, x_2) = 5 - \frac{1}{\sqrt{x_1}} - \frac{1}{\sqrt{x_2}}$$

beschrieben. Der Gewinn des Produzenten sei durch

$$G(x_1,x_2,y) = yp_0 - x_1p_1 - x_2p_2$$

gegeben.

Man maximiere den Gewinn für die Preise $p_0 = 2$, $p_1 = 1$, $p_2 = 8$ unter Berücksichtigung der Produktionsfunktion als Nebenbedingung (a) mittels Reduktionsmethode und (b) mit Hilfe der Methode der Lagrange'schen Multiplikatoren. Ferner ermittle man die im Gewinnmaximum benötigten Faktormengen x_1 , x_2 , die Produktmenge y und den Unternehmergewinn G.

9. Für welche Werte wird die Funktion f(x,y,z) = xyz unter den Nebenbedingungen

$$xy + yz + xz = a$$
 und $x + y + z = b$

möglichst groß?

- 10. Man zeige, dass das Vektorfeld $\vec{f}(x,y) = (y^{\alpha-2},(\alpha-2)xy^{\alpha-3})$ eine Stammfunktion besitzt und berechne diese.
- 11. Welches der folgenden Vektorfelder $\vec{f} = (f_1, f_2, f_3)$ ist ein Gradientenfeld und wie lautet ggf. eine zu \vec{f} gehörende Stammfunktion?

(a)
$$(1,1,1)$$
 (b) $(-x,-y,-z)$ (c) $(2x,2y,0)$ (d) (yz,xz,x^2)

12. Man überprüfe, ob das Vektorfeld $\vec{f} = (yz, (x-2y)z, (x-y)y)$ eine Stammfunktion besitzt. Wenn ja, gebe man alle Stammfunktionen an.