UE Discrete Mathematics
 Exercises for Oct 23/24, 2013

11) Use the matrix tree theorem to compute the number of spanning forests of the graph below!

12) K_{n} denotes the complete graph with n vertices. Show that the number of spanning trees of K_{n} is n^{n-2} !

Hint: Use the matrix tree theorem and delete the first column and the first row of $D\left(K_{n}\right)-A\left(K_{n}\right)$. Then add all rows (except the first) to the first one and observe that all entries of the new first row are equal to 1 . Use the new first row to transform the matrix in such a way that the submatrix built of the second to the last row and second to the last column is diagonal matrix.
13) If T is a tree having no vertex of degree 2 , then T has more leaves than internal nodes. Prove this claim
(a) by induction,
(b) by considering the average degree and using the handshaking lemma.
14) Let $G=(V, E)$ be a connected graph with an even number of vertices. Show that there is a (not necessarily connected) spanning subgraph (i.e. a subgraph with vertex set V) in which all vertices have odd degree. Is this also true for non-connected graphs?
15) List all matroids (E, S) with $E=\{1\}, E=\{1,2\}$ or $E=\{1,2,3\}$.
16) Prove: If $M=(E, S)$ is a matroid and A and B are two bases of M, then $|A|=|B|$.
17) Let $G=(V, E)$ be an undirected graph. Set $M_{k}(G)=(E, S)$ where

$$
S=\{A \subseteq E \mid A=F \cup M \text { where } F \text { is a forest and }|M| \leq k\}
$$

Prove that $M_{k}(G)$ is a matroid.
18) Let $M=(E, S)$ be a matroid and $A \subseteq E$. The $\operatorname{rank} r(A)$ of A is defined as the cardinality of a maximal independent subset of A. Prove that for all $A, B \subseteq E$ we have
(a) $r(A) \leq|A|,(b) A \subseteq B$ implies $r(A) \leq r(B)$, (c) $r(A \cap B)+r(A \cup B) \leq r(A)+r(B)$.
19) Let $M=(E, S)$ be a matroid and \mathcal{B} the family of all its bases. Let $A, B \in \mathcal{B}$ such that $A \neq B$. Prove that
(a) neither of the inclusions $A \subseteq B$ and $B \subseteq A$ holds,
(b) for each $x \in A$ there exists $y \in B$ such that $(A \backslash\{x\}) \cup\{y\} \in \mathcal{B}$.
20) Let \mathcal{B} be a family of sets which satisfies (a) and (b) of the previous exercise. Show that there is a matroid having \mathcal{B} as its family of all its bases.

