
UE Discrete Mathematics

Exercises for Nov 6/7, 2013

21) Use Dijkstra’s algorithm to determine d(x, y) in the following graph.
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22) Use one of the algorithms presented in the lecture to construct a spanning tree which contains
all the shortest paths connecting vertex x with all the other vertices in the graph of Exercise 21.

23) Use the algorithm of Floyd-Warshall to compute all distances in the following graph.
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24) Find a graph G = (V,E) and two vertices x, y ∈ V such that Dijkstra’s algorithm does not
compute the distance d(x, y) correctly.

25) The matrix W corresponds to the weight function w of flow network G = (V,E,w, s, t) and
the matrix Φ to a flow φ on G.

W =





















0 5 7 8 0 0 0
0 0 4 0 10 0 0
0 0 0 5 3 11 0
0 0 0 0 0 6 0
0 0 0 0 0 0 9
0 0 0 0 0 0 4
0 0 0 0 0 0 0





















, Φ =





















0 5 6 0 0 0 0
0 0 0 0 5 0 0
0 0 0 1 2 3 0
0 0 0 0 0 1 0
0 0 0 0 0 0 7
0 0 0 0 0 0 4
0 0 0 0 0 0 0





















.

(a) Determine v(φ).

(b) Find an augmenting path constsing of forward edges only and an augmenting path with at
least one backward edge.

(c) Find a minimal cut.
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(d) Find a maximal flow on G.

26) Use the algorithm of Ford and Fulkerson to compute a maximal flow in the network G1 below!

27) Use the algorithm of Ford and Fulkerson to compute a maximal flow in the network G2 which
has two sources s1 and s2!

28) For a simple and undirected graph G we define the line graph Ḡ as follows: V (Ḡ) = E(G)
and (e, f) ∈ E(Ḡ) if and only if the edges e and f share a vertex. Prove that the line graph of an
Eulerian graph is Eulerian and Hamiltonian!

29) Let Gn denote the n-dimensional hypercube. Show that Gn is Hamiltonian if n ≥ 2.

30) Prove that a graph G is bipartite if and only if each cycle in G has even length.
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