UE Discrete Mathematics
 Exercises for Nov 6/7, 2013

21) Use Dijkstra's algorithm to determine $d(x, y)$ in the following graph.

22) Use one of the algorithms presented in the lecture to construct a spanning tree which contains all the shortest paths connecting vertex x with all the other vertices in the graph of Exercise 21.
23) Use the algorithm of Floyd-Warshall to compute all distances in the following graph.

2

24) Find a graph $G=(V, E)$ and two vertices $x, y \in V$ such that Dijkstra's algorithm does not compute the distance $d(x, y)$ correctly.
25) The matrix W corresponds to the weight function w of flow network $G=(V, E, w, s, t)$ and the matrix $\boldsymbol{\Phi}$ to a flow ϕ on G.

$$
W=\left(\begin{array}{ccccccc}
0 & 5 & 7 & 8 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 10 & 0 & 0 \\
0 & 0 & 0 & 5 & 3 & 11 & 0 \\
0 & 0 & 0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 9 \\
0 & 0 & 0 & 0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \boldsymbol{\Phi}=\left(\begin{array}{ccccccc}
0 & 5 & 6 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

(a) Determine $v(\phi)$.
(b) Find an augmenting path constsing of forward edges only and an augmenting path with at least one backward edge.
(c) Find a minimal cut.

(d) Find a maximal flow on G.
26) Use the algorithm of Ford and Fulkerson to compute a maximal flow in the network G_{1} below!
27) Use the algorithm of Ford and Fulkerson to compute a maximal flow in the network G_{2} which has two sources s_{1} and s_{2} !
28) For a simple and undirected graph G we define the line graph \bar{G} as follows: $V(\bar{G})=E(G)$ and $(e, f) \in E(\bar{G})$ if and only if the edges e and f share a vertex. Prove that the line graph of an Eulerian graph is Eulerian and Hamiltonian!
29) Let G_{n} denote the n-dimensional hypercube. Show that G_{n} is Hamiltonian if $n \geq 2$.
30) Prove that a graph G is bipartite if and only if each cycle in G has even length.

