UE Discrete Mathematics
 Exercises for Nov 13/14, 2013

31) Let G be an Eulerian graph and H be a subdivision of G. Is H Eulerian? Suppose that G is Hamiltonian. Does this imply that H is Hamiltonian as well?
32) For which m and n does the complete bipartite graph $K_{m, n}$ have a Hamiltonian cycle?

33-34) Use a suitable graph model to reformulate the exercises as graph theoretical problems.
33) Given a subset $A \subseteq \mathbb{R}^{2}$ which has area a and two decomposition of A into subsets $A_{1}, A_{2} \ldots, A_{m}$ and $B_{1}, B_{2}, \ldots, B_{m}$ such that all the A_{i} 's and all the B_{i} 's have the same area a / m. Prove that there exists a permutation π of $\{1,2, \ldots, m\}$ such that for all $i=1, \ldots, m$ we have $A_{i} \cap B_{\pi(i)} \neq \emptyset$.
34) Given a set A with n elements and $B=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \subseteq 2^{A}$. Prove that there exists an injective mapping $f: B \rightarrow A$ such that $f\left(A_{i}\right) \in A_{i}$ for all $i \in\{1,2, \ldots, n\}$ if and only if for all $I \subseteq\{1,2, \ldots, n\}$ the cardinality of $\bigcup_{i \in I} A_{i}$ is at least equal to the cardinality of I.
35) Follow the hint below to construct a schedule for the matches in a league of $2 n$ teams which meets the following constraints:
(a) In each round each team plays exactly one match.
(b) In the end each team must have played against each of the other teams exactly once.

Hint: Consider the graph $K_{2 n}$ on the vertex set $\{1,2, \ldots, 2 n\}$ and show that each of the sets $M_{i}=\{1 i\} \cup\{x y \mid x+y \equiv 2 i \bmod 2 n-1$ and $x \neq y, x \neq 1, y \neq 1\}$ is a perfect matching (for $i=2, \ldots, 2 n)$.
36) Let M be a matching of a simple and undirected graph $G=(V, W)$. An open path W in G is called alternating if exactly every other edge of W is in M. We call an alternating path extending if the start as well as the end vertex of W is not incident with any $e \in M$. Prove: If W is an extending alternating path, then $M \triangle W:=(M \backslash W) \cup(W \backslash M)$ is a matching and $|M \triangle W|=|M|+1$.
37) Let G be an undirected simple graph and H a subgraph of G satisfying $H \cong K_{n}$ for some n. What can be said about the relation between $\chi(G)$ and $\chi(H)$? Find a graph G with $\chi(G)=3$ which does not have a K_{3} as a subgraph.
38) Modify the proof of the Five Colour Theorem given in the lecture by replacing the induction hypothesis by "Assume that a simple planar graph with n vertices possesses a feasible colouring with 4 colours" to construct a "proof" of the Four Colour Theorem? Where is the flaw of this proof?
39) A block of a graph is a maximal (induced) subgraph which contains no cut vertex ${ }^{1}$ and therefore no bridge as well. Every graph can be decomposed into blocks in a unique way and two different blocks have at most one vertex and no edge in common. The common vertex is always a cut vertex.
Given a connected graph G which has the blocks $H_{1}, H_{2}, \ldots, H_{k}$. Assume that $\chi\left(H_{i}\right), i=$ $1,2, \ldots, k$, is known. Compute $\chi(G)$.

[^0]40) Show the following inequality for Ramsey numbers: If $r \geq 3$ then
$$
R\left(n_{1}, \ldots, n_{r-2}, n_{r-1}, n_{r}\right) \leq R\left(n_{1}, \ldots, n_{r-2}, R\left(n_{r-1}, n_{r}\right)\right)
$$

Hint: Let $n=R\left(n_{1}, \ldots, n_{r-2}, R\left(n_{r-1}, n_{r}\right)\right)$ and consider an edge colouring of K_{n} with r colours, say c_{1}, \ldots, c_{r}. Identify the colours c_{r-1} and c_{r} and apply the Ramsey property for $r-1$ colours.

[^0]: ${ }^{1} \mathrm{~A}$ cut vertex is a vertex such that its removal increases the number of connected components. A bridge is an edge having this property. Thus the end vertices of a bridge are always cut vertices.

