UE Discrete Mathematics
 Exercises for Nov 20/21, 2013

41) Prove that both, the sum and the product principle, can be extended to more than two sets, i.e. show that:
a) Gíven finite sets $A_{1}, A_{2}, \ldots, A_{n}$ which are pairwise disjoint, then

$$
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{i=1}^{n}\left|A_{i}\right|
$$

b) Gíven finite sets $A_{1}, A_{2}, \ldots, A_{n}$, then

$$
\left|A_{1} \times A_{2} \times \cdots \times A_{n}\right|=\prod_{i=1}^{n}\left|A_{i}\right|
$$

42) In how many ways can the letters a, a, b, b, c, d, e be listed such that the letter c and d are not in consecutive positions?
43) Let M be a non-empty set. Show that M has as many subsets with an odd number of elements as subsets with an even number of elements.
44) Find the number of ways to place n rooks on an $n \times n$ chess board such that no two of them attack each other.
45) Let n be a positive integer and let $\left(a_{1}, \ldots, a_{n}\right)$ be a permutation of $\{1,2, \ldots, n\}$. Define

$$
A_{k}=\left\{a_{i} \mid a_{i}<a_{k}, i>k\right\} \text { and } B_{k}=\left\{a_{i} \mid a_{i}>a_{k}, i<k\right\}
$$

for $1 \leq k \leq n$. Prove that $\sum_{k=1}^{n}\left|A_{k}\right|=\sum_{k=1}^{n}\left|B_{k}\right|$.
46) Let A be a set of 11 positive integers such that for all $x \in A$ we have $20 \nless x$. Prove that there are two integers $a, b \in A$ such that $20 \mid(a+b)$ or $20 \mid(a-b)$.
47) Let $A=\{1,2,3,4\}$ and $B=\{1,2, \ldots, 82\}$. All points of the plane having coordinates (x, y) which satisfy $(x, y) \in A \times B$ are coloured with one of the colours red, green or blue. Prove that there exists a monochromatic rectangle.
Remark: A rectangle is called monochromatic if all its four vertices have the same colour.
48) Let $n \in \mathbb{N}$. Prove the identities

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad \text { and } \quad \sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

by using only the combinatorial interpretation of the binomial coefficients.
49) Let $n \in \mathbb{N}$. Prove the identity

$$
\sum_{m=0}^{n}\binom{m}{k}=\binom{n+1}{k+1}
$$

50) Prove that for all complex numbers x and all $k \in \mathbb{N}$ we have

$$
\binom{-x}{k}=(-1)^{k}\binom{x+k-1}{k}
$$

