UE Discrete Mathematics
 Exercises for Nov 27/28, 2013

51) Compute the number of words made of $2 n$ letters taken from the alphabet $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ such that each letter occurs exactly twice and no two consecutive letters are equal.
52) Let

$$
f_{n}=\left|\left\{\pi \in S_{n} \mid \forall 1 \leq i \leq n: \pi(i) \neq i\right\}\right| .
$$

Prove that $f_{1}=0, f_{2}=1$ and $f_{n}=(n-1)\left(f_{n-1}+f_{n-2}\right)$. Furthermore, prove that this recurrence relation implies

$$
f_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

53)

a) Find a simple expression for $S_{n, 2}$.
b) Explain the identity $s_{n, n-1}=S_{n, n-1}=\binom{n}{2}$. (Find a simple reason, not a formal proof).
54) Prove the following identity:

$$
x^{n}=\sum_{k=0}^{n} S_{n, k}(x)_{k} \quad(n \geq 0) .
$$

55) Let A, B be two finite sets with $|A|=n$ and $|B|=k$. How many injective mappings $f: A \rightarrow B$ are there? Furthermore, show that the number of surjective mappings $f: A \rightarrow B$ equals $k!S_{n, k}$.
56) The n-th Bell number equals the number of set partitions of $\{1,2, \ldots, n\}$. We set $B_{0}:=1$. Prove the following identities:

$$
B_{n}=\sum_{k=0}^{n} S_{n, k} \quad \text { and } \quad B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} B_{k}
$$

57) Prove that the squares of the Fibonacci number satisfy the recurrence relation $a_{n+3}-2 a_{n+2}-$ $2 a_{n+1}+a_{n}=0$ and solve this recurrence relation with the correct initial conditions.
58) Let a_{n} denote the number of fat subsets of $\{1,2, \ldots, n\}$ where a set A is called fat if $A=\emptyset$ or $\forall k \in A: k \geq|A|$. Prove that $a_{n}=F_{n+2}$ (as usual $\left(F_{n}\right)_{n \geq 0}$ denotes the sequence of the Fibonacci numbers) and show that this implies

$$
F_{n+1}=\sum_{k=0}^{n}\binom{n-k}{k} .
$$

59) Compute $\sum_{k=1}^{n-1} \frac{1}{k(n-k)}$ in two ways: (a) using a term by term partial fraction decomposition, (b) with generating functions.
60) Use generating functions to answer the following question: What is the number of solutions of the equation $a+b+c+d=25$ if $a, b, c, d \in\{0,1,2, \ldots, 9\}$?
