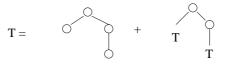
UE Discrete Mathematics Exercises for Dec 4/5, 2013

61) Solve the following recurrence using generating functions: $a_{n+1} = a_n + (n+1)^2$, $a_0 = 1$.

62) Solve the following recurrence using generating functions: $a_{n+2} = 3a_{n+1} - 2a_n$, $a_0 = 1$, $a_1 = 3$.

63) Use generating functions to find a closed form expressions for the sum $\sum_{k=0}^{n} (k^2 + 3k + 2)$.

64) Compute


$$[z^n]\frac{2+3z^2}{\sqrt{1-5z}}.$$

65) Prove the following identity:

$$\sum_{n \ge 0} \binom{2n}{n} z^n = \frac{1}{\sqrt{1 - 4z}}.$$

66) A *t*-ary tree is a plane rooted tree such that every node has either *t* or 0 successors. A node with *t* successors is called internal nodes. How many leaves has a *t*-ary tree with *n* internal nodes? Moreover, let a_n be the number of *t*-ary trees with *n* internal nodes and A(z) the generating function of this sequence. Find a functional equation for A(z)!

67) Compute the numbers t_n of plane rooted trees with n nodes which can be described by the equation

68) Compute the number of plane rooted trees with n nodes.

69) Consider a regular (n + 2)-gon A, say, with the vertices $0, 1 \dots, n + 1$. A triangulation is a decomposition of A into n triangles such that the 3 vertices of each triangle are vertices of A as well. Show that the set \mathcal{T} of triangulations of regular polygons can be described as a combinatorial construction satisfying

$$\mathcal{T} = \{\varepsilon\} \cup \mathcal{T} \times \Delta \times \mathcal{T}$$

where Δ denotes a single triangle and ε denotes the empty triangulation (consisting of no triangle and corresponding to the case n = 0). What is the number of triangulations of A?

70) Let \mathcal{L} denote the set of words over the alphabet $\{a, b\}$ that contain exactly k occurrences of b. Obviously, the number of words in \mathcal{L} which have exactly n letters is $\binom{n}{k}$. Prove this by finding a specification of \mathcal{L} as combinatorial construction and translating this specification into generating functions.