UE Discrete Mathematics

Exercises for Dec 11/12, 2013

71) Let $\mathcal{L}^{[d]}$ denote the set of words over the alphabet $\{a, b\}$ that contain exactly k occurrences of b such that there are always never more than d a's between two consecutive b's. Find a specification of $\mathcal{L}^{[d]}$ as combinatorial construction and use generating functions to compute the number of words in $\mathcal{L}^{[d]}$ having exactly n letters.

Remark: The result is an alternating sum which cannot be simplified further.

72) Use exponential generating functions to determine the number a_n of of ordered choices of n balls such that there are 2 or 4 red balls, an even number of green balls and an arbitrary number of blue balls.

73) An involution is a permutation π such that $\pi \circ \pi = \operatorname{id}_M$ where $M = \{1, 2, \ldots, n\}$. Let \mathcal{I} be the set of involutions. Determine the exponential generating function I(z) of \mathcal{I} .

74) Let \mathcal{T} be the class of rooted and labelled trees, i.e. the *n* vertices of a tree of size *n* are labelled with the labels $1, 2, \ldots, n$. Use the theory of combinatorial constructions to determine a functional equation for the exponential generating function of \mathcal{T} . Finally, apply the following theorem to determine the number of trees with *n* vertices in \mathcal{T} . (You are not asked to prove the theorem.)

Theorem. Let
$$\Phi(w) = \sum_{n>0} \phi_n z^n$$
 with $\phi_0 \neq 0$. If $z = w/\phi(w)$, then $[z^n]w = \frac{1}{n} [w^{n-1}] \Phi(w)^n$.

75) Let P be the set of all divisors of 12. Determine the Möbius function of (P, |).

76) Let (P, \leq) be the poset defined by $P = \{0, 1, 2, 3, 4\}$ and $0 \leq 1 \leq 4, 0 \leq 2 \leq 4, 0 \leq 3 \leq 4$. Compute all values $\mu(x, y)$ for $x, y \in P$.

77) Let (P_1, \leq_1) and (P_2, \leq_2) be two locally finite posets and (P, \leq) be defined by $P = P_1 \times P_2$ and for $(a, x), (b, y) \in P$:

$$(a, x) \le (b, y) \Longleftrightarrow a \le_1 b \land x \le_2 y.$$

Show that (P, \leq) is a poset and that the Möbius functions of P, P_1, P_2 satisfy $\mu_P((a, x), (b, y)) = \mu_{P_1}(a, b) \cdot \mu_{P_2}(x, y)$.

78) Let p, q, r be three distinct prime numbers and m = pqr. How many of the numbers $1, 2, \ldots, m$ are relatively prime to m? (Two numbers x and y are called relatively prime if their greatest common divisor is 1.)

79) Prove the following assertions:

- (a) Every finite lattice has a 0-element and a 1-element.
- (b) In every lattice L we have $(x \land y) \lor y = y$ for all $x, y \in L$
- (c) There exists a lattice such that the following implication is not true:

$$x \leq z \implies \forall y : x \lor (y \land z) = (x \lor y) \land z.$$

80) Let (P, \leq) be a finite poset. A subset $C \subseteq P$ is called a *chain* if (C, \leq) is a linearly ordered set. A subset $A \subseteq P$ is called an *antichain* if no two elements of A are comparable with respect to \leq . A *chain cover* of P is a partition $P = C_1 \cup C_2 \cup \cdots \cup C_k$ in which all the C_i are chains. Dilworth's Theorem asserts that the size of any largest antichain is equal to the number of chains in a smallest chain cover.

Use Dilworth's Theorem to prove that every poset with at least rs + 1 elements has either a chain with r + 1 elements or an antichain with s + 1 elements.