UE Discrete Mathematics

Exercises for Dec 11/12, 2013

71) Let $\mathcal{L}^{[d]}$ denote the set of words over the alphabet $\{a, b\}$ that contain exactly k occurrences of b such that there are always never more than $d a$'s between two consecutive b 's. Find a specification of $\mathcal{L}^{[d]}$ as combinatorial construction and use generating functions to compute the number of words in $\mathcal{L}^{[d]}$ having exactly n letters.
Remark: The result is an alternating sum which cannot be simplified further.
72) Use exponential generating functions to determine the number a_{n} of of ordered choices of n balls such that there are 2 or 4 red balls, an even number of green balls and an arbitrary number of blue balls.
73) An involution is a permutation π such that $\pi \circ \pi=\operatorname{id}_{M}$ where $M=\{1,2, \ldots, n\}$. Let \mathcal{I} be the set of involutions. Determine the exponential generating function $I(z)$ of \mathcal{I}.
74) Let \mathcal{T} be the class of rooted and labelled trees, i.e. the n vertices of a tree of size n are labelled with the labels $1,2, \ldots, n$. Use the theory of combinatorial constructions to determine a functional equation for the exponential generating function of \mathcal{T}. Finally, apply the following theorem to determine the number of trees with n vertices in \mathcal{T}. (You are not asked to prove the theorem.)
Theorem. Let $\Phi(w)=\sum_{n \geq 0} \phi_{n} z^{n}$ with $\phi_{0} \neq 0$. If $z=w / \phi(w)$, then $\left[z^{n}\right] w=\frac{1}{n}\left[w^{n-1}\right] \Phi(w)^{n}$.
75) Let P be the set of all divisors of 12 . Determine the Möbius function of (P, \mid).
76) Let (P, \leq) be the poset defined by $P=\{0,1,2,3,4\}$ and $0 \leq 1 \leq 4,0 \leq 2 \leq 4,0 \leq 3 \leq 4$. Compute all values $\mu(x, y)$ for $x, y \in P$.
77) Let $\left(P_{1}, \leq_{1}\right)$ and $\left(P_{2}, \leq_{2}\right)$ be two locally finite posets and (P, \leq) be defined by $P=P_{1} \times P_{2}$ and for $(a, x),(b, y) \in P$:

$$
(a, x) \leq(b, y) \Longleftrightarrow a \leq_{1} b \wedge x \leq_{2} y
$$

Show that (P, \leq) is a poset and that the Möbius functions of P, P_{1}, P_{2} satisfy $\mu_{P}((a, x),(b, y))=$ $\mu_{P_{1}}(a, b) \cdot \mu_{P_{2}}(x, y)$.
78) Let p, q, r be three distinct prime numbers and $m=p q r$. How many of the numbers $1,2, \ldots, m$ are relatively prime to m ? (Two numbers x and y are called relatively prime if their greatest common divisor is 1.)
79) Prove the following assertions:
(a) Every finite lattice has a 0-element and a 1-element.
(b) In every lattice L we have $(x \wedge y) \vee y=y$ for all $x, y \in L$
(c) There exists a lattice such that the following implication is not true:

$$
x \leq z \Longrightarrow \forall y: x \vee(y \wedge z)=(x \vee y) \wedge z
$$

80) Let (P, \leq) be a finite poset. A subset $C \subseteq P$ is called a chain if (C, \leq) is a linearly ordered set. A subset $A \subseteq P$ is called an antichain if no two elements of A are comparable with respect to \leq. A chain cover of P is a partition $P=C_{1} \cup C_{2} \cup \cdots \cup C_{k}$ in which all the C_{i} are chains. Dilworth's Theorem asserts that the size of any largest antichain is equal to the number of chains in a smallest chain cover.
Use Dilworth's Theorem to prove that every poset with at least $r s+1$ elements has either a chain with $r+1$ elements or an antichain with $s+1$ elements.
