UE Discrete Mathematics
 Exercises for Dec 18/19, 2013

81) Prove: If x and y are odd integers, then $2 \mid\left(x^{2}+y^{2}\right)$ but $4 \not \backslash\left(x^{2}+y^{2}\right)$.
82) Prove that for every integer n the number $n^{2}-n$ is even and that $n^{3}-n$ is a multiple of 6 .
83) Let a, b, c, d be integers. Prove:
a) If $a \mid b$ and $a \mid c$, then for all integers x, y we have $a \mid(x b+y c)$.
b) If $\operatorname{gcd}(a, b)=1$ and $c \mid a$ and $d \mid b$, then $\operatorname{gcd}(c, d)=1$.
c) If $a \mid c$ and $b \mid c$ and $\operatorname{gcd}(a, b)=1$, then $a b \mid c$
84) Prove that any two positive integers a, b satisfy $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a \cdot b$.
85) Use the Euklidean algorithm to find two integers a and b such that $2863 a+1057 b=42$.
86) Use the Euklidean algorithm to find all greatest common divisors of $x^{3}+5 x^{2}+7 x+3$ and $x^{3}+x^{2}-5 x+3$ in $\mathbb{Q}[x]$.
87) Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence, i.e. $F_{0}=0, F_{1}=1, F_{n+1}=F_{n}+F_{n-1}$. Prove that any two consecutive Fibonacci numbers are coprime.
88) Prove that there exist infinitely many prime numbers p which are solutions of the equation $p \equiv 3 \bmod 4$.
Hint: Assume that there are only finitely many such primes, say p_{1}, \ldots, p_{n}, and consider the number $4 p_{1} p_{2} \cdots p_{n}-1$.
89) Which of the following mappings is well-defined?
a) $f: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}, \bar{x} \mapsto \overline{x^{2}}$
b) $g: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}, \bar{x} \mapsto \overline{2^{x}}$
90) Use the Chinese remainder theorem to solve the following system of congruence relations:

$$
\begin{aligned}
& 3 x \equiv 12(13) \\
& 5 x \equiv 7(22) \\
& 2 x \equiv 3(7)
\end{aligned}
$$

