UE Discrete Mathematics Exercises for Dec 18/19, 2013

- **81)** Prove: If x and y are odd integers, then $2 \mid (x^2 + y^2)$ but $4 \not| (x^2 + y^2)$.
- 82) Prove that for every integer n the number $n^2 n$ is even and that $n^3 n$ is a multiple of 6.
- 83) Let a, b, c, d be integers. Prove:
 - a) If $a \mid b$ and $a \mid c$, then for all integers x, y we have $a \mid (xb + yc)$.
 - b) If gcd(a, b) = 1 and $c \mid a$ and $d \mid b$, then gcd(c, d) = 1.
 - c) If $a \mid c$ and $b \mid c$ and gcd(a, b) = 1, then $ab \mid c$
- 84) Prove that any two positive integers a, b satisfy $gcd(a, b) \cdot lcm(a, b) = a \cdot b$.
- 85) Use the Euklidean algorithm to find two integers a and b such that 2863a + 1057b = 42.

86) Use the Euklidean algorithm to find all greatest common divisors of $x^3 + 5x^2 + 7x + 3$ and $x^3 + x^2 - 5x + 3$ in $\mathbb{Q}[x]$.

87) Let $(F_n)_{n\geq 0}$ be the Fibonacci sequence, i.e. $F_0 = 0, F_1 = 1, F_{n+1} = F_n + F_{n-1}$. Prove that any two consecutive Fibonacci numbers are coprime.

88) Prove that there exist infinitely many prime numbers p which are solutions of the equation $p \equiv 3 \mod 4$.

Hint: Assume that there are only finitely many such primes, say p_1, \ldots, p_n , and consider the number $4p_1p_2\cdots p_n-1$.

89) Which of the following mappings is well-defined?

- a) $f: \mathbb{Z}_m \to \mathbb{Z}_m, \, \overline{x} \mapsto \overline{x^2}$
- b) $g: \mathbb{Z}_m \to \mathbb{Z}_m, \overline{x} \mapsto \overline{2^x}$

90) Use the Chinese remainder theorem to solve the following system of congruence relations:

$$3x \equiv 12 (13)$$

$$5x \equiv 7 (22)$$

$$2x \equiv 3 (7)$$