UE Discrete Mathematics Exercises for January 8/9, 2014

91) Use the Chinese remainder theorem to solve the following system of congruence relations:

$$5x \equiv 8 (32)$$

$$14x \equiv 2 (22)$$

$$9x \equiv 3 (15)$$

92) Let (n, e) = (3233, 49) be a public RSA key. Compute the decryption key d.

93) Use the key of exercise 92) to encrypt the string "COMPUTER". Decompose the string into blocks of length 2 and apply the mapping $A \mapsto 01$, $B \mapsto 02, \ldots, Z \mapsto 26$.

94) Prove that the identity

$$\varphi(m \cdot n) = \varphi(m)\varphi(n)\frac{\gcd(m,n)}{\varphi(\gcd(m,n))}$$

holds for all $m, n \in \mathbb{N}^+$. φ denotes Euler's totient function.

95) Let λ and φ denote the Carmichael function and Euler's totient function, respectively. Compute $\lambda(172872)$ and $\varphi(172872)$.

96) Let (e, n) and (d, n) be Bob's public and private RSA key, respectively. Suppose that Bob sends an encrypted message c and Alice wants to find out the original message m. She has the idea to send Bob a message and ask him to sign it. How can she find out m?

Hint: Pick a random integer r and consider the message $r^e c \mod n$.

97) Let $A_{d,n} = \{x \mid 1 \le x \le n \text{ and } gcd(x,n) = d\}$

- (a) Show that $\bigcup_{d|n} A_{d,n} = \{1, 2, ..., n\}.$
- (b) Show that $|A_{d,n}| = |A_{1,n/d}|$. Hint: First show that gcd(k,n) = d if and only if $gcd(\frac{k}{d}, \frac{n}{d}) = 1$ and use this to construct a bijection.
- (c) Use (b) to show that

$$\sum_{d|n} \varphi(d) = \sum_{d|n} \varphi\left(\frac{n}{d}\right) = n$$

where φ denotes Euler's totient function.

98) Prove: If G is a finite group and $a \in G$ an element with $\operatorname{ord}_G(a) = r$. Then $\operatorname{ord}_G(a^k) = r/\operatorname{gcd}(r,k)$.

99) Let G be a finite group and $a \in G$ an element for which $\operatorname{ord}_G(a)$ is maximal. Prove that for all $b \in G$ the order $\operatorname{ord}_G(b)$ is a divisor of $\operatorname{ord}_G(a)$.

100) Show that $m \mid n$ implies $\lambda(m) \mid \lambda(n)$ where λ denotes the Carmichael function.

Hint: Prove first that $a_i \mid b_i$ for $i = 1, \ldots, k$ implies $\operatorname{lcm}(a_1, a_2, \ldots, a_k) \mid \operatorname{lcm}(b_1, b_2, \ldots, b_k)$.