UE Discrete Mathematics
 Exercises for January 8/9, 2014

91) Use the Chinese remainder theorem to solve the following system of congruence relations:

$$
\begin{aligned}
5 x & \equiv 8(32) \\
14 x & \equiv 2(22) \\
9 x & \equiv 3(15)
\end{aligned}
$$

92) Let $(n, e)=(3233,49)$ be a public RSA key. Compute the decryption key d.
93) Use the key of exercise 92) to encrypt the string „COMPUTER". Decompose the string into blocks of length 2 and apply the mapping $\mathrm{A} \mapsto 01, \mathrm{~B} \mapsto 02, \ldots, \mathrm{Z} \mapsto 26$.
94) Prove that the identity

$$
\varphi(m \cdot n)=\varphi(m) \varphi(n) \frac{\operatorname{gcd}(m, n)}{\varphi(\operatorname{gcd}(m, n))}
$$

holds for all $m, n \in \mathbb{N}^{+} . \varphi$ denotes Euler's totient function.
95) Let λ and φ denote the Carmichael function and Euler's totient function, respectively. Compute $\lambda(172872)$ and $\varphi(172872)$.
96) Let (e, n) and (d, n) be Bob's public and private RSA key, respectively. Suppose that Bob sends an encrypted message c and Alice wants to find out the original message m. She has the idea to send Bob a message and ask him to sign it. How can she find out m ?
Hint: Pick a random integer r and consider the message $r^{e} c \bmod n$.
97) Let $A_{d, n}=\{x \mid 1 \leq x \leq n$ and $\operatorname{gcd}(x, n)=d\}$
(a) Show that $\bigcup_{d \mid n} A_{d, n}=\{1,2, \ldots, n\}$.
(b) Show that $\left|A_{d, n}\right|=\left|A_{1, n / d}\right|$. Hint: First show that $\operatorname{gcd}(k, n)=d$ if and only if $\operatorname{gcd}\left(\frac{k}{d}, \frac{n}{d}\right)=1$ and use this to construct a bijection.
(c) Use (b) to show that

$$
\sum_{d \mid n} \varphi(d)=\sum_{d \mid n} \varphi\left(\frac{n}{d}\right)=n
$$

where φ denotes Euler's totient function.
98) Prove: If G is a finite group and $a \in G$ an element with $\operatorname{ord}_{G}(a)=r$. Then $\operatorname{ord}_{G}\left(a^{k}\right)=$ $r / \operatorname{gcd}(r, k)$.
99) Let G be a finite group and $a \in G$ an element for which $\operatorname{ord}_{G}(a)$ is maximal. Prove that for all $b \in G$ the order $\operatorname{ord}_{G}(b)$ is a divisor of $\operatorname{ord}_{G}(a)$.
100) Show that $m \mid n$ implies $\lambda(m) \mid \lambda(n)$ where λ denotes the Carmichael function.

Hint: Prove first that $a_{i} \mid b_{i}$ for $i=1, \ldots, k$ implies $\operatorname{lcm}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \mid \operatorname{lcm}\left(b_{1}, b_{2}, \ldots, b_{k}\right)$.

