UE Discrete Mathematics
 Exercises for Jan 15/16, 2014

101) List all irreducible polynomials up to degree 3 in \mathbb{Z}_{3}.
102) Decompose $x^{4}+x^{3}+1$ into irreducible factors over \mathbb{Z}_{2}.
103) Let R be a ring and $\left(I_{j}\right)_{j \in J}$ be a family of ideals of R. Prove that $\bigcap_{j \in J} I_{j}$ is an ideal of R.
104) Let R be a ring and I be an ideal of R. Then $(R / I,+)$ is the factor group of $(R,+)$ over $(I,+)$. Define a multiplication on R / I by

$$
(a+I) \cdot(b+I):=(a b)+I .
$$

Prove that this operation is well-defined, i.e. that

$$
\text { and } \left.\quad \begin{array}{l}
a+I=c+I \\
b+I=d+I
\end{array}\right\} \Longrightarrow(a b)+I=(c d)+I .
$$

Furthermore, show that $(R / I,+, \cdot)$ is a ring.
105) Show that $(\mathbb{Z}[x],+, \cdot)$ is a ring and that $1 \notin(\{x, x+2\})$.

Remark: It can be shown that a principal ideal which is generated by $a_{1}, a_{2}, \ldots, a_{k}$ can be alternatively generated by $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. Therefore this example shows that $\mathbb{Z}[x]$ is a ring where not every ideal is a principal ideal. As a consequence, $\mathbb{Z}[x]$ cannot be a Euklidean ring.
106) Show that the set $\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ with the usual addition and multiplication is a field. Compute $(3-5 \sqrt{2})^{-1}$.
107) Show that the set $R=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$ with the usual addition and multiplication is an integral domain but not a field. Furthermore, prove that there are infinitely many units in R and give three concrete examples.
108) Give a reason why the Chinese remainder theorem (suitably modified) can be applied to the following system of congruence relations over $\mathbb{Q}[x]$ and use it to solve the system.

$$
\begin{aligned}
& (x+1) P(x) \equiv 2 x+1\left(x^{2}+x+1\right) \\
& (x+2) P(x) \equiv 3 x+3\left(x^{2}+2 x+3\right)
\end{aligned}
$$

109) Prove: If $(R,+, \cdot)$ is a ring and I_{1}, I_{2} two of its ideals, then

$$
\begin{aligned}
& I_{1}+I_{2}: \\
& I_{1} * I_{2}:=\left\{a+b \mid a \in a_{1} b_{1}+a_{2} b_{2}+\cdots+I_{2}\right\} \text { and } \\
&\left.b_{n} \mid n \geq 1, a_{i} \in I_{1}, b_{i} \in I_{2} \text { for } 1 \leq i \leq n\right\}
\end{aligned}
$$

are ideals as well.
110) Show that $\sqrt{2}+\sqrt{3}$ is algebraic over \mathbb{Q} and determine its minimal polynomial.

