UE Discrete Mathematics
 Exercises for Jan 22/23, 2014

111) Let K be a field. Prove:
(a) If $a, b \in K$, then for all $k, l \in \mathbb{N}^{+}$the element $\sqrt[k]{a} \sqrt[l]{b}$ is algebraic over K.
(b) If a is algebraic over K, then for all $n \in \mathbb{N}^{+}$the element $\sqrt[n]{a}$ is algebraic over K as well.
112) Which of the following polynomials is primitive over \mathbb{Z}_{3} ?

$$
x^{3}+x^{2}+x+1, \quad x^{3}+x^{2}+x+2, \quad x^{3}+2 x+1
$$

113) Let K be a field with $\operatorname{char}(K)=p$. Prove that $(a+b)^{p}=a^{p}+b^{p}$ for all $a, b \in K$.

Hint: Use the binomial theorem and consider the equation $\binom{p}{k}=p \cdot \frac{(p-1)!}{k!(p-k)!}$ for $0<k<p$. Show that $\binom{p}{k} \in \mathbb{N}$ implies that the fraction on the right-hand side must be an integer, too, since the factors in the denominator do not divide p.
114) Construct a field with 8 elements and demonstrate on some concrete examples how addition and multiplication are done in this field.
115) Consider the field $\mathbb{Z}_{2}[x] /(m(x))$ where $m(x)=x^{8}+x^{4}+x^{3}+x+1$. Hence the residue classes modulo $m(x)$ are

$$
\overline{b(x)}=\overline{b_{7} x^{7}+b_{6} x^{6}+\cdots+b_{1} x+b_{0}}
$$

and can be identified with a byte $b_{7} b_{6} \cdots b_{1} b_{0}$. Compute the sum of the two bytes 10010101 and 11001100 in this field.
116) Show that the repetition code of order r (i.e. each bit of the original word is sent r times) is a linear code. Determine a generating matrix and a check matrix of this code.
117) Let

$$
C=\{000000,001011,010101,011110,100110,101101,110011,111000\} \subseteq \mathbb{Z}_{2}^{6}
$$

(a) Show that C is an (n, k) linear code and determine n and k.
(b) Determine a generating matrix and a check matrix of C.
(c) Determine the dual code C^{\perp}.
(d) Determine the cosets, their leaders and their syndromes.
(e) Use (d) to decode 010010 and 010110.
118) Four symbols have to be encoded with elements of \mathbb{Z}_{2}^{5} such that the code forms a $(5, k)$ linear code (k to be determined) with which 1-bit errors can be detected and corrected. Determine a generating matrix and a check matrix of this code.
119) Examine if there is a cyclic code $C \subseteq \mathbb{Z}_{2}^{6}$ such that $001111 \in C$.
120) Let $p(x)=x^{3}+2$ be the generating polynomial of a cyclic $(9,6)$ linear code over \mathbb{Z}_{3}. Determine a generating matrix such that this code is a systematic code, i.e. encoding is done by attaching one or more bits at the end of the original words.

