VO Discrete Mathematics
 6th Exercises for Nov 19/20, 2014

1) Use generating functions to find a closed form expressions for the sum $\sum_{k=0}^{n}\left(k^{2}+3 k+2\right)$.
2) Compute

$$
\left[z^{n}\right] \frac{2+3 z^{2}}{\sqrt{1-5 z}}
$$

3) Prove the following identity:

$$
\sum_{n \geq 0}\binom{2 n}{n} z^{n}=\frac{1}{\sqrt{1-4 z}}
$$

4) A t-ary tree is a plane rooted tree such that every node has either t or 0 succesors. A node with t succesors is called internal nodes. How many leaves has a t-ary tree with n internal nodes? Moreover, let a_{n} be the number of t-ary trees with n internal nodes and $A(z)$ the generating function of this sequence. Find a functional equation for $A(z)$!
5) Compute the numbers t_{n} of plane rooted trees with n nodes which can be described by the equation

$$
\mathrm{T}=
$$

6) Compute the number of plane rooted trees with n nodes.
7) Consider a regular $(n+2)$-gon A, say, with the vertices $0,1 \ldots, n+1$. A triangulation is a decomposition of A into n triangles such that the 3 vertices of each triangle are vertices of A as well. Show that the set \mathcal{T} of triangulations of regular polygons can be described as a combinatorial construction satisfying

$$
\mathcal{T}=\{\varepsilon\} \cup \mathcal{T} \times \Delta \times \mathcal{T}
$$

where Δ denotes a single triangle and ε denotes the empty triangulation (consisting of no triangle and corresponding to the case $n=0$). What is the number of triangulations of A ?
8) Let \mathcal{L} denote the set of words over the alphabet $\{a, b\}$ that contain exactly k occurrences of b. Obviously, the number of words in \mathcal{L} which have exactly n letters is $\binom{n}{k}$. Prove this by finding a specification of \mathcal{L} as combinatorial construction and translating this specification into generating functions.
9) Let $\mathcal{L}^{[d]}$ denote the set of words over the alphabet $\{a, b\}$ that contain exactly k occurrences of b such that there are always never more than $d a$'s between two consecutive b 's. Find a specification of $\mathcal{L}^{[d]}$ as combinatorial construction and use generating functions to compute the number of words in $\mathcal{L}^{[d]}$ having exactly n letters.
Remark: The result is an alternating sum which cannot be simplified further.
10) Let $s_{n k}$ be the Stirling numbers of the first kind, that is, the number of permutations of $\{1,2, \ldots, n\}$, where the cycle representation has exactly k cycles. Prove

$$
\sum_{n, k} s_{n k} \frac{z^{n}}{n!} u^{k}=e^{u \log \frac{1}{1-z}}=\frac{1}{(1-z)^{u}} .
$$

Remark: Start with the identity

$$
\sum_{k=0}^{n} s_{n k} u^{k}=u(u+1)(u+2) \ldots(u+n-1) .
$$

