3. Übungsblatt - Analysis auf Mannigfaltigkeiten - WS 2011

- 1. Es sei M ein topologischer Raum mit der Eigenschaft, dass es zu jeder offenen Überdeckung \mathcal{X} von M eine \mathcal{X} untergeordnete Zerlegung der Eins gibt. Zeigen Sie, dass M parakompakt ist.
- 2. Es sei M eine glatte Mannigfaltigkeit, $B \subseteq M$ eine abgeschlossene Menge und $\delta: M \to \mathbb{R}$ eine positive stetige Funktion.
 - (a) Verwenden Sie eine geeignete Zerlegung der Eins, um zu zeigen, dass es eine glatte Funktion $\bar{\delta}: M \to \mathbb{R}$ mit $0 < \bar{\delta}(x) < \delta(x)$ für alle $x \in M$ gibt.
 - (b) Zeigen Sie, dass es eine stetige Funktion $\psi: M \to \mathbb{R}$ gibt, die glatt und positiv auf $M \setminus B$ und identisch Null auf B ist, und außerdem $\psi(x) < \delta(x)$ für alle $x \in M$ erfüllt.
- 3. Es seien M,N,P glatte Mannigfaltigkeiten, $F:M\to N$ und $G:N\to P$ glatte Abbildungen und $p\in M$. Dann gelten folgende Aussagen:
 - (a) $F_*: T_pM \to T_{F(p)}N$ ist linear.
 - (b) $(G \circ F)_* = G_* \circ F_* : T_pM \to T_{G \circ F(p)}P.$
 - (c) $(\mathrm{Id}_M)_* = \mathrm{Id}_{T_pM} : T_pM \to T_pM$.
 - (d) Ist F ein Diffeomorphismus, dann ist $F_*: T_pM \to T_{F(p)}N$ ein Isomorphismus.
 - (e) Ist M zusammenhängend und $F_*: T_pM \to T_{F(p)}N$ die Nullabbildung für jedes $p \in M$, dann ist F konstant.
- 4. Es seien M_1, \ldots, M_k glatte Mannigfaltigkeiten und $\pi_j : M_1 \times \cdots \times M_k \to M_j$ die Projektion auf den j-ten Faktor. Zeigen Sie, dass für jede Wahl von $p_i \in M_i$, $i = 1, \ldots, k$ die Abbildung

$$\alpha: T_{(p_1,\ldots,p_k)}(M_1\times\cdots\times M_k)\to T_{p_1}M_1\oplus\cdots\oplus T_{p_k}M_k$$

definiert durch

$$\alpha(X) = (\pi_{1*}X, \dots, \pi_{k*}X)$$

ein Isomorphismus ist.

- 5. Es sei G eine Lie Gruppe.
 - (a) Es bezeichne $m:G\times G\to G$ die Gruppenmultiplikation. Zeigen Sie, dass

$$m_*: T_{(e,e)}(G \times G) \cong T_eG \oplus T_eG \to T_eG$$

durch $m_*(X,Y) = X + Y$ gegeben ist.

(b) Es bezeichne $i: G \to G$ die Gruppeninversion. Zeigen Sie, dass $i_*: T_eG \to T_eG$ durch $i_*X = -X$ gegeben ist.

- 6. Es sei M eine glatte Mannigfaltigkeit. Für jedes $p \in M$ bezeichne C_p^{∞} die Algebra der Keime von glatten reellwertigen Funktionen an p und \mathcal{D}_p sei der Vektorraum der Derivationen von C_p^{∞} . Eine Derivation der Algebra C_p^{∞} ist ein Vektorraumhomomorphismus $D: C_p^{\infty} \to \mathbb{R}$ mit der Eigenschaft D(fg) = D(f)g(p) + f(p)D(g), wobei f(p) und g(p) die Auswertung eines Keims bei p bezeichnet (diese ist klarerweise wohldefiniert). Zeigen Sie, dass T_pM und \mathcal{D}_p isomorph sind.
- 7. Es sei M eine glatte Mannigfaltigkeit und $p \in M$. Es bezeichne \mathcal{C}_p die Menge aller glatten Kurven $\gamma: J \to M$ mit $0 \in J$ und $\gamma(0) = p$. Auf \mathcal{C}_p sei weiters eine Äquivalenzrelation wie folgt definiert: $\gamma_1 \sim \gamma_2$, wenn $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ für jede glatte reellwertige Funktion f, die in einer Umgebung von p definiert ist. Zeigen Sie, dass die Abbildung $\Phi: \mathcal{C}_p/\sim \to T_pM$, gegeben durch $\Phi[\gamma] = \gamma'(0)$, wohldefiniert und bijektiv ist.