1. Exercise sheet - Analysis on Manifolds - 2021

1.1 Topological Manifolds

- 1. Let X be a locally path-connected topology space. Show that
 - (a) the connected components of X are open in X,
 - (b) the path-connected components of X are the same its connected components, and
 - (c) X is connected if and only if X is path-connected.
- 2. Let X be a topological space.
 - (a) Suppose that f, f' and g, g' are paths in X with the same start and end points as well as f(1) = f'(1) = g(0) = g'(0). Show that if $f \sim f'$ and $g \sim g'$, then $f \cdot g \sim f' \cdot g'$.
 - (b) Show that for paths f, g, h in X,

$$([f] \cdot [g]) \cdot [h] = [f] \cdot ([g] \cdot [h]),$$

whenever the products are defined.

- 3. Let X be a path-connected topological space. Prove the following statements.
 - (a) The fundamental groups of X at different base-points are all isomorphic.
 - (b) X is simply connected if and only if every two paths in X, with the same initial and end points, are homotopic.
- 4. Let M_1, \ldots, M_k be topological manifolds of dimensions n_1, \ldots, n_k , respectively. Show that $M_1 \times \cdots \times M_k$ is a topological manifold of dimension $n_1 + \cdots + n_k$, with charts of the form $(U_1 \times \cdots \times U_k, \varphi_1 \times \cdots \times \varphi_k)$, where (U_i, φ_i) is a chart of M_i for all $1 \le i \le k$.
- 5. Show that the defining properties of topological Manifold are independent of each other by giving examples of topological spaces each of which has exactly two of the three defining properties.
- 6. Let M be a topological manifold, and let \mathcal{U} be an open cover of M.
 - (a) Assuming that each set in \mathcal{U} intersects only finitely many others, show that \mathcal{U} is locally finite.
 - (b) Give an example to show that the converse (a) is false in general.
 - (c) Now assume the sets in \mathcal{U} are precompact in M and prove the converse of (a).

7. Suppose that M is a locally Euclidean Hausdorff space of dimension $n \ge 1$. Show that M is second-countable if and only if it is paracompact and has countably many connected components.

1.2 Smooth Structures

- 8. Show that if a non-empty topological manifold M of dimension $n \ge 1$ admits a smooth structure, then it admits infinitely many of them.
- 9. Denote by N := (0, ..., 0, 1) the "north pole" of the sphere $\mathbb{S}^n \subseteq \mathbb{R}^{n+1}$ and S := -N the "south pole". The *Stereographic projection* $\sigma : \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$ is defined by

$$\sigma(x^1, \dots, x^{n+1}) = \frac{(x^1, \dots, x^n)}{1 - x^{n+1}}$$

For $x \in \mathbb{S}^n \setminus \{S\}$ define $\bar{\sigma}(x) = -\sigma(-x)$. Show that

(a) σ is bijective and its inverse is given by

$$\sigma^{-1}(u^1,\ldots,u^n) = \frac{(2u^1,\ldots,2u^n,\|u\|^2 - 1)}{\|u\|^2 + 1},$$

- (b) the atlas of \mathbb{S}^n consisting of the two charts $(\mathbb{S}^n \setminus \{N\}, \sigma)$ and $(\mathbb{S}^n \setminus \{S\}, \bar{\sigma})$ define a smooth structure on \mathbb{S}^n , and
- (c) the smooth structure defined in (b) is the same as the standard smooth structure of \mathbb{S}^n defined in the lectures.
- 10. By identifying \mathbb{R}^2 with \mathbb{C} , we can think of \mathbb{S}^1 as a subset of the complex plane. An angular function on a subset U of \mathbb{S}^1 is a continuous function $\theta : U \to \mathbb{R}$ such that $e^{i\theta(z)} = z$ for all $z \in U$. Show that there exists an angular function θ on an open subset $U \subset \mathbb{S}^1$ if and only if $U \neq \mathbb{S}^1$. For any such angular function show that (U, θ) is a smooth coordinate chart for \mathbb{S}^1 with its standard smooth structure.
- 11. Let $M = cl \mathbb{B}^n$ be the closure of the unit Euclidean ball in \mathbb{R}^n . Show that M is a topological manifold with boundary for which each point in \mathbb{S}^{n-1} is a boundary point, and each point in \mathbb{B}^n is an interior point. Show how to give a smooth structure to M such that every smooth interior chart is a smooth chart for the standard smooth structure on \mathbb{B}^n .