2. Exercise sheet - Analysis on Manifolds - 2021

1. Suppose that $M \subseteq \mathbb{R}^{n}$ is an embedded m-dimensional submanifold, and let $U M \subseteq T \mathbb{R}^{n}$ be the set of all unit tangent vectors to M :

$$
U M=\left\{(x, v) \in T \mathbb{R}^{n}: x \in M, v \in T_{x} M,|v|=1\right\} .
$$

It is called the unit tangent bundle of M. Prove that $U M$ is an embedded $(2 m-1)$ dimensional submanifold of $T \mathbb{R}^{n} \approx \mathbb{R}^{n} \times \mathbb{R}^{n}$.
2. For each $a \in \mathbb{R}$, let M_{a} be the subset of \mathbb{R}^{2} defined by

$$
M_{a}=\left\{(x, y): y^{2}=x(x-1)(x-a)\right\} .
$$

For which values of a is M_{a} an embedded sunmanifold of \mathbb{R}^{2} ? For which values can M_{a} be a topology and smooth structure making it into a immersed submanifold?
3. The vector field V on \mathbb{R}^{n}, whose value at $x \in \mathbb{R}^{n}$ is

$$
V_{x}=\left.x^{1} \frac{\partial}{\partial x^{1}}\right|_{x}+\cdots+\left.x^{n} \frac{\partial}{\partial x^{n}}\right|_{x},
$$

is called the Euler vector field.
(a) Show that V is smooth.
(b) Let c be a real number, and $f: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}$ be a smooth function that is positively homogeneous of degree c, meaning that $f(\lambda x)=\lambda^{c} f(x)$ fro all $\lambda>0$ and $x \in \mathbb{R}^{n} \backslash\{0\}$. Prove that $V f=c f$.
4. Let M be a nonempty positive-dimensional smooth manifold. Show that $\mathfrak{X}(M)$ is infinite dimensional.
5. Let M be a smooth manifold with boundary. Show that there exists a global smooth vector field on M whose restriction to ∂M is everywhere inward-pointing, and one whose restriction to ∂M is everywhere outward-pointing.
6. Let M be the open submanifold of \mathbb{R}^{2} where x and y are positive, and let $F: M \rightarrow M$ be the map $F(x, y)=(x y, y / x)$. Show that F is a diffeomorphim, and compute $F_{*} X$ and $F_{*} Y$, where

$$
X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}, \quad Y=y \frac{\partial}{\partial x} .
$$

7. for each of the following vector fields on the plane, compute its coordinate representation in polar coordinates on the right half plane $\{(x, y): x>0\}$.
(a) $X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$.
(b) $Y=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$.
(c) $Z=\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x}$.
8. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R P}^{2}$ be the smooth map $F(x, y)=[x, y, 1]$, and let $X \in \mathfrak{X}\left(\mathbb{R}^{2}\right)$ be defined by $X=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$. Prove that there is a vector field $Y \in \mathfrak{X}\left(\mathbb{R P}^{2}\right)$ that is F-related to X, and compute its coordinate representation in terms of the charts defined in exercise 4 exercise sheet 2.
9. Show that there is a smooth vector field on \mathbb{S}^{2} that vanishes at exactly one point.
10. Let M be a smooth manifold with or without boundary, let N be a smooth manifold, and let $f: M \rightarrow N$ be a smooth map. Define $F: M \rightarrow M \times N$ by $F(x)=(x, f(x))$. Show that for every $X \in \mathfrak{X}(M)$, there s a smooth vector field on $M \times N$ that is F-related to X.
11. Let M be a smooth manifold, $f \in C^{\infty}(M)$ and $Y \in \mathfrak{X}(M)$. Show that $f Y: M \rightarrow T M$ defined by $(f Y)_{p}=f(p) Y_{p}$ is a smooth vector field.
12. Let M be a smooth manifold, $f \in C^{\infty}(M)$ and $Y \in \mathfrak{X}(M)$. Show that $f Y: M \rightarrow T M$ defined by $(f Y)_{p}=f(p) Y_{p}$ is a smooth vector field.
13. Suppose that M is a smooth manifold and $S \subseteq M$ is an embedded submanifold with or without boundary. Given $X \in \mathfrak{X}(S)$, show that there is a smooth vector field Y on a neighborhood of S in M such that $X=\left.Y\right|_{S}$ Show that every such vector field extends to all of M if and only if S is properly embedded.
