2. Exercise sheet - Analysis on Manifolds - 2021

1. Suppose that $M \subseteq \mathbb{R}^n$ is an embedded *m*-dimensional submanifold, and let $UM \subseteq T\mathbb{R}^n$ be the set of all unit tangent vectors to M:

$$UM = \{(x, v) \in T\mathbb{R}^n : x \in M, v \in T_xM, |v| = 1\}.$$

It is called the unit tangent bundle of M. Prove that UM is an embedded (2m-1)dimensional submanifold of $T\mathbb{R}^n \approx \mathbb{R}^n \times \mathbb{R}^n$.

2. For each $a \in \mathbb{R}$, let M_a be the subset of \mathbb{R}^2 defined by

$$M_a = \{(x, y) : y^2 = x(x - 1)(x - a)\}.$$

For which values of a is M_a an embedded summanifold of \mathbb{R}^2 ? For which values can M_a be a topology and smooth structure making it into a immersed submanifold?

3. The vector field V on \mathbb{R}^n , whose value at $x \in \mathbb{R}^n$ is

$$V_x = x^1 \left. \frac{\partial}{\partial x^1} \right|_x + \dots + x^n \left. \frac{\partial}{\partial x^n} \right|_x,$$

is called the Euler vector field.

- (a) Show that V is smooth.
- (b) Let c be a real number, and $f : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ be a smooth function that is positively homogeneous of degree c, meaning that $f(\lambda x) = \lambda^c f(x)$ for all $\lambda > 0$ and $x \in \mathbb{R}^n \setminus \{0\}$. Prove that Vf = cf.
- 4. Let M be a nonempty positive-dimensional smooth manifold. Show that $\mathfrak{X}(M)$ is infinite dimensional.
- 5. Let M be a smooth manifold with boundary. Show that there exists a global smooth vector field on M whose restriction to ∂M is everywhere inward-pointing, and one whose restriction to ∂M is everywhere outward-pointing.
- 6. Let M be the open submanifold of \mathbb{R}^2 where x and y are positive, and let $F: M \to M$ be the map F(x, y) = (xy, y/x). Show that F is a diffeomorphim, and compute F_*X and F_*Y , where

$$X = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}, \quad Y = y\frac{\partial}{\partial x}.$$

7. for each of the following vector fields on the plane, compute its coordinate representation in polar coordinates on the right half plane $\{(x, y) : x > 0\}$.

(a)
$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$$

(b) $Y = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$
(c) $Z = (x^2 + y^2) \frac{\partial}{\partial x}$

- 8. Let $F : \mathbb{R}^2 \to \mathbb{RP}^2$ be the smooth map F(x, y) = [x, y, 1], and let $X \in \mathfrak{X}(\mathbb{R}^2)$ be defined by $X = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$. Prove that there is a vector field $Y \in \mathfrak{X}(\mathbb{RP}^2)$ that is *F*-related to *X*, and compute its coordinate representation in terms of the charts defined in exercise 4 exercise sheet 2.
- 9. Show that there is a smooth vector field on \mathbb{S}^2 that vanishes at exactly one point.
- 10. Let M be a smooth manifold with or without boundary, let N be a smooth manifold, and let $f: M \to N$ be a smooth map. Define $F: M \to M \times N$ by F(x) = (x, f(x)). Show that for every $X \in \mathfrak{X}(M)$, there is a smooth vector field on $M \times N$ that is F-related to X.
- 11. Let M be a smooth manifold, $f \in C^{\infty}(M)$ and $Y \in \mathfrak{X}(M)$. Show that $fY : M \to TM$ defined by $(fY)_p = f(p)Y_p$ is a smooth vector field.
- 12. Let M be a smooth manifold, $f \in C^{\infty}(M)$ and $Y \in \mathfrak{X}(M)$. Show that $fY : M \to TM$ defined by $(fY)_p = f(p)Y_p$ is a smooth vector field.
- 13. Suppose that M is a smooth manifold and $S \subseteq M$ is an embedded submanifold with or without boundary. Given $X \in \mathfrak{X}(S)$, show that there is a smooth vector field Yon a neighborhood of S in M such that $X = Y|_S$ Show that every such vector field extends to all of M if and only if S is properly embedded.