5. Exercise sheet - Analysis on Manifolds - 2021

- 1. Suppose M is a smooth n-manifold, $p \in M$; and $y^1 \dots, y^k$ are smooth real-valued functions defined on a neighborhood of p in M. Prove the following statements.
 - (a) If k = n and $(dy^1|_p, \ldots, dy^n|_p)$ is a basis for T_pM ; then (y^1, \ldots, y^n) are smooth coordinates for M in some neighborhood of p.
 - (b) If $(dy^1|_p, \ldots, dy^k|_p)$ is a linearly independent k-tuple of covectors and k < n, then there are smooth functions y^{k+1}, \ldots, y^n such that (y^1, \ldots, y^n) are smooth coordinates for M in a neighborhood of p.
 - (c) If $(dy^1|_p, \ldots, dy^k|_p)$ span T_p^*M ; there are indices i_1, \ldots, i_n such that $(y^{i_1}, \ldots, y^{i_n})$ are smooth coordinates for M in a neighborhood of p
- 2. Let M be a smooth manifold, and $C \subset M$ be an embedded submanifold. Let $f \in C^{\infty}(M)$, and suppose $p \in C$ is a point at which f attains a local maximum or minimum value among points in C. Given a smooth local defining function $\Phi: U \to \mathbb{R}^k$ for C on a neighborhood U of p in M; show that there are real number $\lambda_1, \ldots, \lambda_k$ (called Lagrange multipliers) such that

$$df_p = \lambda_1 d\Phi^1|_p + \dots + \lambda_k d\Phi^k|_p$$

- 3. Show that any two points in a connected smooth manifold can be joined by a smooth curve segment.
- 4. The *length* of a smooth curve segment $\gamma:[a,b]\to\mathbb{R}^n$ is defined by the value of the (ordinary) integral

$$L(\gamma) = \int_{a}^{b} |\gamma'(t)| dt.$$

show that there is no smooth covector $\omega \in \mathfrak{X}^*(\mathbb{R}^n)$ with the property that $\int_{\gamma} \omega = L(\gamma)$ for every smooth curve γ .

5. Let M be a compact manifold of positive dimension. Show that every exact covector field on M vanishes at least at two points in each component of M.

1

6. Compute the flow of each of the following vector fields on \mathbb{R}^2 :

(a)
$$V = y \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$$
.

(b)
$$W = x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y}$$
.

(c)
$$X = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$$
.

- 7. Suppose M is a smooth, compact manifold that admits a nowhere vanishing smooth vector field. Show that there exists a smooth map $F: M \to M$ that is homotopic to the identity and has no fixed points.
- 8. Let M be a connected smooth manifold. Show that the group of diffeomorphisms of M acts transitively on M: that is, for any $p, q \in M$; there is a diffeomorphism $F: M \to M$ such that F(p) = q. Hint: first prove that if $p, q \in \mathbb{B}^n$ (the open unit ball in \mathbb{R}^n), there is a compactly supported smooth vector field on \mathbb{B}^n whose flow θ satisfies $\theta_1(p) = q$.
- 9. Let M be a smooth manifold and let $S \subseteq M$ be a compact embedded submanifold. Suppose $V \in \mathfrak{X}(M)$ is a smooth vector field that is nowhere tangent to S. Show that there exists $\varepsilon > 0$ such that the flow of V restricts to a smooth embedding $\Phi: (-\varepsilon, \varepsilon) \times S \to M$.
- 10. Give an example of finite-dimensional vector spaces V and W and a specific element $\alpha \in V \otimes W$ that cannot be expressed as $v \otimes w$ for $v \in V$ and $w \in W$.
- 11. Let V be an n-dimensional real vector space. Show that

$$\dim \Sigma^{k}(V^{*}) = \binom{n+k-1}{k} = \frac{(n+k-1)!}{k!(n-1)!}.$$

- 12. Prove the following statements:
 - (a) The symmetrical product is commutative and bilinear.
 - (b) If S, T are covectors, then

$$ST = \frac{S \otimes T + T \otimes S}{2}.$$