6. Exercise sheet - Analysis on Manifolds - 2021

1. Suppose that $\tilde{\pi}: V \times W \to Z$ is a bilinear map into a vector space Z with the following property: for any bilinear map $B: V \times W \to Y$, there is a unique linear map $\tilde{B}: Z \to Y$ such that the following diagram commutes:

Then there exists a unique isomorphism $\Phi: V \otimes W \to Z$ such that $\tilde{\pi} = \Phi \circ \pi$, where π is the canonical projection $\pi: V \times W \to V \otimes W$. [Remark: this shows that the details of the construction used to define the tensor product space are irrelevant, as long as the resulting space satisfies the characteristic property.]

2. Let V_1, \ldots, V_k and W be finite-dimensional real vector spaces. Prove that there is a canonical (basis-independent) isomorphism

$$V_1^* \otimes \cdots \otimes V_k^* \otimes W \cong L(V_1, \ldots, V_k; W).$$

- 3. Show that covectors $\omega^1, \dots, \omega^k$ on a finite-dimensional vector space are linearly dependent if and only if $\omega^1 \wedge \dots \wedge \omega^k = 0$.
- 4. Let M be a smooth *n*-manifold with or without boundary, and let $(\omega^1, \ldots, \omega^k)$ be an ordered k-tuple of smooth 1-forms on an open subset $U \subset M$ such that $(\omega^1|_p, \ldots, \omega^k|_p)$ is linearly independent for each $p \in U$. Given smooth 1-forms $\alpha^1, \ldots, \alpha^k$ on U such that

$$\sum_{i=1}^{k} \alpha^{i} \wedge w^{i} = 0,$$

show that each α^i can be written as a linear combination of $\omega^1 \dots \omega^k$ with smooth coefficients.

5. Define a 2-form ω on \mathbb{R}^3 by

$$w = x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$$

(a) Compute ω in spherical coordinates (ρ, φ, θ) defined by

$$(x, y, z) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi).$$

- (b) Compute $d\omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3-form.
- (c) Compute the pullback $\iota_{\mathbb{S}^2}^* \omega$ to \mathbb{S}^2 , using coordinates (ϕ, θ) on the open subset where these coordinates are defined.
- (b) Show that $\iota_{\mathbb{S}^2}^* \omega$ is not zero.
- 6. Suppose M is a smooth manifold that is the union of two orientable open submanifolds with connected intersection. Show that M is orientable. Use this to give another proof that \mathbb{S}^n is orientable.
- 7. Suppose M and N are oriented smooth manifolds with or without boundary, and $F: M \to N$ is a local diffeomorphism. Show that if M is connected, then F is either orientation-preserving or orientation-reversing
- 8. Let θ be a smooth flow on an oriented smooth manifold with or without boundary. Show that for each $t \in \mathbb{R}$, θ_t is orientation-preserving wherever it is defined.
- 9. Let $v_1 \ldots, v_n$ be any n linearly independent vectors in \mathbb{R}^n , and let P be the n-dimensional parallelepiped they span:

$$P = \{t_1 v_1 + \dots + t_n v_n : 0 \ge t_i \ge 1\}.$$

Show that $\operatorname{Vol}(P) = |\det(v_1, \ldots, v_n)|.$

10. Let $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1 \subseteq \mathbb{R}^4$ denote the 2-torus, defined as the set of points (w, x, y, z) such that $w^2 + x^2 = y^2 + z^2 = 1$, with the product orientation determined by the standard orientation on \mathbb{S}^1 . Compute $\int_{\mathbb{T}^2} \omega$, where ω is the following 2-form on \mathbb{R}^4 :

$$\omega = x \, y \, z \, dw \wedge dy.$$