6. Exercise sheet - Analysis on Manifolds - 2021

1. Suppose that $\tilde{\pi}: V \times W \rightarrow Z$ is a bilinear map into a vector space Z with the following property: for any bilinear map $B: V \times W \rightarrow Y$, there is a unique linear map $\tilde{B}: Z \rightarrow Y$ such that the following diagram commutes:

Then there exists a unique isomorphism $\Phi: V \otimes W \rightarrow Z$ such that $\tilde{\pi}=\Phi \circ \pi$, where π is the canonical projection $\pi: V \times W \rightarrow V \otimes W$. [Remark: this shows that the details of the construction used to define the tensor product space are irrelevant, as long as the resulting space satisfies the characteristic property.]
2. Let V_{1}, \ldots, V_{k} and W be finite-dimensional real vector spaces. Prove that there is a canonical (basis-independent) isomorphism

$$
V_{1}^{*} \otimes \cdots \otimes V_{k}^{*} \otimes W \cong \mathrm{~L}\left(V_{1}, \ldots, V_{k} ; W\right)
$$

3. Show that covectors $\omega^{1}, \cdots, \omega^{k}$ on a finite-dimensional vector space are linearly dependent if and only if $\omega^{1} \wedge \cdots \wedge \omega^{k}=0$.
4. Let M be a smooth n-manifold with or without boundary, and let $\left(\omega^{1}, \ldots, \omega^{k}\right)$ be an ordered k-tuple of smooth 1 -forms on an open subset $U \subset M$ such that $\left(\left.\omega^{1}\right|_{p}, \ldots,\left.\omega^{k}\right|_{p}\right)$ is linearly independent for each $p \in U$. Given smooth 1 -forms $\alpha^{1}, \ldots, \alpha^{k}$ on U such that

$$
\sum_{i=1}^{k} \alpha^{i} \wedge w^{i}=0
$$

show that each α^{i} can be written as a linear combination of $\omega^{1} \ldots \omega^{k}$ with smooth coefficients.
5. Define a 2 -form ω on \mathbb{R}^{3} by

$$
w=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y
$$

(a) Compute ω in spherical coordinates (ρ, φ, θ) defined by

$$
(x, y, z)=(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) .
$$

(b) Compute $d \omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3 -form.
(c) Compute the pullback $\iota_{\mathbb{S}^{2}}^{*} \omega$ to \mathbb{S}^{2}, using coordinates (ϕ, θ) on the open subset where these coordinates are defined.
(b) Show that $\iota_{\mathbb{S} 2}^{*} \omega$ is not zero.
6. Suppose M is a smooth manifold that is the union of two orientable open submanifolds with connected intersection. Show that M is orientable. Use this to give another proof that \mathbb{S}^{n} is orientable.
7. Suppose M and N are oriented smooth manifolds with or without boundary, and $F: M \rightarrow N$ is a local diffeomorphism. Show that if M is connected, then F is either orientation-preserving or orientation-reversing
8. Let θ be a smooth flow on an oriented smooth manifold with or without boundary. Show that for each $t \in \mathbb{R}, \theta_{t}$ is orientation-preserving wherever it is defined.
9. Let $v_{1} \ldots, v_{n}$ be any n linearly independent vectors in \mathbb{R}^{n}, and let P be the n-dimensional parallelepiped they span:

$$
P=\left\{t_{1} v_{1}+\ldots t_{n} v_{n}: 0 \geq t_{i} \geq 1\right\} .
$$

Show that $\operatorname{Vol}(P)=\left|\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)\right|$.
10. Let $\mathbb{T}^{2}=\mathbb{S}^{1} \times \mathbb{S}^{1} \subseteq \mathbb{R}^{4}$ denote the 2-torus, defined as the set of points (w, x, y, z) such that $w^{2}+x^{2}=y^{2}+z^{2}=1$, with the product orientation determined by the standard orientation on \mathbb{S}^{1}. Compute $\int_{\mathbb{T}^{2}} \omega$, where ω is the following 2-form on \mathbb{R}^{4} :

$$
\omega=x y z d w \wedge d y .
$$

