VO Discrete Mathematics - VU Diskrete Mathematik Exercises for Oct 12/13, 2011

1) A simple undirected graph is called cubic if each of its vertices has degree 3 .
(a) Find a cubic graph with 6 vertices!
(b) Is there a cubic graph with an odd number of vertices?
(c) Prove that for all $n \geq 2$ there exists a cubic graph with $2 n$ vertices!
2) Use a suitable graph theoretical model to solve the following problems:
(a) Show that in every city at least two of its inhabitants have the same number of neighbours!
(b) 7 friends want to send postcards according to the following rules: (i) Each person sends and receives exactly 3 cards. (ii) Each one receives only cards from those to whom he or she sent a card.

Tell how this can be done or prove that this is impossible!
3) Show that each of the following statements is equivalent to the statement "T is a tree":

1. Every two nodes of T are connected by exactly one path.
2. T is connected and $\alpha_{0}(T)=\alpha_{1}(T)+1$.
3. T is a minimal connected graph, i.e., deleting an edge destroys connectivity.
4. T is a maximal acyclic graph, i.e., adding an edge generates a cycle.
4) Let $G=(V, E)$ be a simple and undirected graph with $|V|>4$. The complement $G^{\kappa}=\left(V^{\kappa}, E^{\kappa}\right)$ of G is defined as follows: $V^{\kappa}=V$ and $v w \in E^{\kappa}$ if and only if $v w \notin E$. Show that either G or G^{κ} (or both) must contain a cycle! Furthermore, determine all trees T such that T^{κ} is a tree as well!
5) Let $G=(V, E)$ be a simple and undirected graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Its adjacency matrix is denoted by $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$. Moreover, let $A^{k}=\left(a_{i j}^{[k]}\right)_{1 \leq i, j \leq n}$ be the k-th power of A. Prove that $a_{i j}^{[k]}$ equals the number of walks from v_{i} to v_{j} having length k !
6) Find the strong connected components and the reduction G_{R} of the graph G below. Furthermore, determine all node bases of G.

7) Let $G=(V, E)$ be a simple and undirected graph and G_{R} its reduction. Prove that G_{R} is acyclic!
8) Use the matrix tree theorem to compute the number of spanning subgraphs of the graph below!

9) K_{n} denotes the complete graph with n vertices. Show that the number of spanning trees of K_{n} is n^{n-2} !

Hint: Use the matrix tree theorem and delete the first column and the first row of $D\left(K_{n}\right)-A\left(K_{n}\right)$. Then add all rows (except the first) to the first one and observe that all entries of the new first row are equal to 1 . Use the new first row to transform the matrix in such a way that the submatrix built of the second to the last row and second to the last column is diagonal matrix.
10) If T is a tree having no vertex of degree 2 , then T has more leaves than internal nodes. Prove this claim
(a) by induction,
(b) by considering the average degree and using the handshaking lemma.

