5. ÜBUNG 104.283 Diskrete Mathematik für Informatik

(31) Compute the minimal distances between all pairs of vertices in the following graph using the Floyd-Warshall algorithm:

- (32) (a) The line graph \overline{G} of a simple undirected graph G = (V, E) is the (simple) graph with vertex set E, with an edge between two vertices of \overline{G} , if and only if the corresponding edges are incident to a common vertex of G. Show that the line graph of an Eulerian graph is Eulerian and Hamiltonian, and that the line graph of a Hamiltonian graph is also Hamiltonian. If \overline{G} is Hamiltonian, can we conclude that G is Hamiltonian?
 - (b) Is a subdivision of an Eulerian graph Eulerian? Is a subdivision of a Hamiltonian graph Hamiltonian?
- (33) Compute the closure of the following graph:

- (34) Show that the *n*-dimensional hypercube is Hamiltonian for $n \ge 2$.
- (35) For which m and n does the complete bipartite graph $K_{m,n}$ have a Hamiltonian cycle?
- (36) Given a subset $A \subseteq \mathbb{R}^2$ with area a and two decomposition of A into subsets A_1, A_2, \ldots, A_m and B_1, B_2, \ldots, B_m such that all the sets A_i and B_i have the same area a/m. Prove that there exists a permutation π of $\{1, 2, \ldots, m\}$ such that for all $i = 1, \ldots, m$ we have $A_i \cap B_{\pi(i)} \neq \emptyset$.

- (37) Follow the hint below to construct a schedule for the matches in a league of 2n teams which meets the following constraints:
 - In each round each team plays exactly one match.
 - In the end each team must have played against each of the other teams exactly once.

Hint: Consider the graph K_{2n} on the vertex set $\{1, 2, \ldots, 2n\}$ and show that each of the sets $M_i = \{1i\} \cup \{xy : x + y \equiv 2i \mod 2n - 1 \text{ and } x \neq y, x \neq 1, y \neq 1\}$ is a perfect matching for $i \in \{2, \ldots, 2n\}$.

(38) Let M be a matching of a simple, undirected graph G = (V, E). A path P in G is alternating if exactly every second edge of P is in M. An alternating path extends if the both the first and the last vertices of P are not covered by an edge in M. Prove for an extending alternating path P that $M \triangle P := (M \setminus P) \cup (P \setminus M)$ is a matching and $|M \triangle P| = |M| + 1$.