Geometric Analysis: Problem Sheet 1

1. Show that $x:[0,1] \rightarrow \mathbb{R}^{2}$ given by $x(t)=(t, t \sin (1 / t))$ for $0<t \leq 1$ and $x(0)=(0,0)$ is a parametrization of a non-rectifiable curve.
2. Show that a curve $x:[0,1] \rightarrow \mathbb{R}^{2}$ with a Lipschitz parametrization is rectifiable.
3. Let $C=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\} \subset \mathbb{R}^{3}$. The Schwarz lantern $C_{m, n}$ is a polyhedron inscribed to the unit cylinder C depending on parameters m, n : Take $m(n+1)$ vertices, a regular m-gon at each height k / n, but staggered so that the vertices at even levels are at angles $2 \pi j / m$ while those at odd levels are at angles $\pi(2 j+1) / m$. The polyhedron $C_{m, n}$ consists of $2 m n$ congruent isosceles triangles and $2 m$ triangles at the base and top of C.
(i) Find the area of $C_{m, n}$ as a function of m, n.
(ii) Show that any limiting area greater than or equal to 4π can be achieved in some limit of $m, n \rightarrow \infty$.
4. For an outer measure μ on \mathbb{R}^{n}, let $\mathcal{M}(\mu)$ be the class of subsets of \mathbb{R}^{n} that are μ-measurable. Show that if μ and ν are outer measures on \mathbb{R}^{n}, then $\mu+\nu$ is an outer measure and

$$
\mathcal{M}(\mu) \cap \mathcal{M}(\nu) \subseteq \mathcal{M}(\mu+\nu)
$$

5. Let μ be an outer measure on \mathbb{R}^{n} and $E_{i} \in \mathcal{M}(\mu)$. Show that
(i) $E_{i} \subset E_{i+1}$ for all $i \in \mathbb{N} \Rightarrow \mu\left(\bigcup_{i \in \mathbb{N}} E_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(E_{i}\right)$
(ii) $E_{i+1} \subset E_{i}$ for all $i \in \mathbb{N}$ and $\mu\left(E_{1}\right)<\infty \Rightarrow \mu\left(\bigcap_{i \in \mathbb{N}} E_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(E_{i}\right)$

Does (ii) also hold without the assumption $\mu\left(E_{1}\right)<\infty$?
6. Discuss Vitali's example (showing that Lebesgue measure is not σ-additive on all subsets of \mathbb{R}).

