Geometric Analysis: Problem Set 2

1. Let μ be a measure on \mathbb{R}^n and $p \in [1, \infty)$. If $u \in L^p(\mathbb{R}^n, \mu)$ and $u \ge 0$, then

$$\int_{\mathbb{R}^n} |u|^p d\mu = p \int_0^\infty t^{p-1} \mu(\{u > t\}) \, dt.$$

Here $\{u > t\} = \{x \in \mathbb{R}^n : u(x) > t\}.$ (Hint: Apply Fubini to $\mu \times \mathcal{L}^1$ and $f(x, t) = p t^{p-1} \mathbb{1}_{(0,|u(x)|)}(t).$)

- 2. Let $n \ge 1$, $s \in (0, n)$, and $\delta \in (0, \infty]$. Show that \mathcal{H}^s is a Borel measure on \mathbb{R}^n , and that \mathcal{H}^s_{δ} is *never* a Borel measure on \mathbb{R}^n .
- 3. If μ and ν are Borel regular measures on \mathbb{R}^n such that $\mu = \nu$ on $\mathcal{B}(\mathbb{R}^n)$, then $\mu = \nu$ on $\mathcal{P}(\mathbb{R}^n)$.
- 4. Let I = [a, b] be a line segment with endpoints $a, b \in \mathbb{R}^n$. Show that $\mathcal{H}^1(I) = |b a|$.
- 5. Prove that the Hausdorff dimension of the Cantor set is $\alpha = \log 2 / \log 3$.
- 6. Show that a linear functional $L: C_c(\mathbb{R}^n; \mathbb{R}^m) \to \mathbb{R}$ is continuous if and only if it is bounded. (Hint: To show the 'only if' part, argue by contradiction: there exist a compact set $K \subset \mathbb{R}^n$ and a sequence $\{\varphi_i\} \subset C_c(\mathbb{R}^n; \mathbb{R}^m)$ such that $|\varphi_i| \leq 1$, spt $\varphi_i \subset K$, and $\langle L, \varphi_i \rangle \geq i$. To conclude, consider $\psi_i = i^{-1/2} \varphi_i$.